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The goal of this hands-on exercise is to get familiar with the basics of Markov Chain Monte Carlo (MCMC)
methods, by to writing an MCMC code to infer cosmological parameters from type Ia supernovæ data.
It covers:

• simulating from a given data model,
• writing a basic likelihood for cosmological data,
• writing a Metropolis-Hastings sampler,
• diagnosing a Markov Chain (trace plots, tuning the proposal distribution),
• checking convergence and efficiency (Gelman-Rubin test, effective sample size),
• changing the prior for existing chains via importance sampling,
• writing and tuning a basic Hamiltonian Markov Chain Monte Carlo sampler,
• replacing part of a data model by an emulator.

I. BACKGROUND: COSMOLOGY WITH SUPERNOVÆ IA

This exercise is based around the relationship between the apparent brightness and distance of a special type
of astronomical objects that have a known intrinsic brightness (so-called ‘standard candles’). This relationship is
useful for cosmological physics, as the theoretical relation depends on the amount of matter, the amount of dark
energy, and the curvature of the Universe. Type Ia supernovæ are thought to arise in binary systems in which
one of the stars is a white dwarf that collapses when reaching the Chandrasekhar limit, and are thus standard
candles (after calibration). The resulting ‘supernova Hubble diagram’ (Figure 1) was famously used to infer the
acceleration of the expansion of the Universe in 1998, culminating in the award of the 2011 Nobel prize in physics
to Schmidt, Perlmutter and Riess.
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FIG. 1. Left panel. JLA Hubble diagram, representing the observed B-band apparent magnitudes mB of 740 type Ia
supernovae as a function of their redshift. The error bars represented correspond to 2∆mB, where ∆mB is included in the
JLA catalogue. The different colours correspond to the different observational programmes used in the compilation. Right
panel. Correlation matrix of the observed apparent magnitudes, taking into account statistical and various systematic
uncertainties (see Betoule et al ., 2014, section 5.5 for details on the construction of the covariance matrix). Figure taken
from Leclercq (2018).
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II. THEORY AND PARAMETERS

The flux-luminosity relationship for a supernova of luminosity L is given by

F =
L

4πD2
L

, (1)

which defines the cosmological luminosity distance DL. In the standard cosmological model, DL is given as a
function of redshift z by (Hogg, 1999)

DL =
(1 + z)c

H0

√
|Ωk|

Sk(r), (2)

where

r(z) =
√
|Ωk|

∫ z

0

dz′√
ΩΛ +Ωk(1 + z′)2 +Ωm(1 + z′)3

, (3)

and

Sk(r) =


sinh [r(z)] if Ωk > 0,

r(z) if Ωk = 0,

sin [r(z)] if Ωk < 0,

(4)

depending on the sign of the Universe’s curvature density parameter Ωk ≡ Ωm + ΩΛ − 1. There are three free
parameters in the problem: the matter density parameter Ωm, the dark energy (or cosmological constant) density
parameter ΩΛ, and the Hubble parameter H0. Instead of H0, it is convenient to work with the dimensionless
parameter h, defined such that H0 ≡ 100h km s−1 Mpc−1. For anyone unfamiliar with cosmology, Ωm, ΩΛ, and
h are somewhere between 0 and 1.

For a flat Universe (Ωk = 0), there are only two free parameters, and the expression for DL simplifies to

DL(z) =
c

H0
(1 + z)

∫ z

0

dz′√
1− Ωm +Ωm(1 + z′)3

. (5)

To avoid evaluating the integral, it is possible to use an accurate fitting formula (valid for a flat Universe only),
given by (Pen, 1999)

DL(z) =
c

H0
(1 + z)

[
η(1,Ωm)− η

(
1

1 + z
,Ωm

)]
, (6)

where

η(a,Ωm) ≡ 2
√
s3 + 1

(
1

a4
− 0.1540

s

a3
+ 0.4304

s2

a2
+ 0.19097

s3

a
+ 0.066941 s4

)−1/8

(7)

and s3 ≡ (1− Ωm)/Ωm. This is accurate to better than 0.4% for 0.2 ≤ Ωm ≤ 1.
Fluxes of astronomical objects are usually expressed in terms of apparent magnitudes m, where m ≡

−2.5 log10 F +constant (such that a difference of 5 magnitudes corresponding to a brightness factor of 100). The
absolute magnitude M is the value of m if the source is at a luminosity distance of 10 pc, i.e.

M ≡ m− 5 log10
DL

10 pc
. (8)

In the case of standard candles, both the apparent magnitude and absolute magnitude are known;1 it is therefore
possible to estimate the distance using the distance modulus µ ≡ m−M . With DL in Mpc, this is

µ = 25− 5 log10 h+ 5 log10

(
D∗

L

Mpc

)
, (9)

where the Hubble parameter has been factored out of DL, i.e. D∗
L ≡ DL(h = 1).

1 There is here a simplification in the exercise: we assume that we know the absolute magnitude M (or intrinsic luminosity L) of
type Ia supernovæ, but in fact, unless we have at least one supernova with a known distance, we don’t. More realistically, M and h
are degenerate, since M is set from low-redshift supernovæ for which we assume Hubble’s law to give the distance. For the purpose
of this exercise, we will ignore this complication.
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III. DATA

The full data file from the ‘JLA’ sample (Betoule et al ., 2014) consists of data from 740 supernovæ.2
For the purpose of this exercise, we will use a pre-processed file where the data are averaged together in 31

narrow bins of redshift containing supernovæ with z < 1.3, to give a measurement of the distance modulus µ for
each bin. The data file jla_mub.txt contains N = 31 pairs of (z, µ). The 31 × 31 covariance matrix C of the
data, provided as a list of numbers in an obvious order, is in the file jla_mub_covmatrix.txt.

IV. PRELIMINARY EXERCISE: SUPERNOVA SIMULATIONS

1. Setup your environment. You need to have access to some programming language and be comfortable
using it. A convenient choice is python as provided by Jupyter Notebooks (off-line or in Google Colab, for
example).

2. Plot the theoretical distance modulus formula for a flat Universe, for parameter values Ωm ∈ {0.2, 0.3, 0.4, 0.5},
for the range 0 < z < 2. Set h = 0.7.

3. Plot the observational data (in the file jla_mub.txt) on the graph.

4. Generate some simulated data: make a random set of 20 supernovæ with redshifts drawn uniformly in the
range 0 < z < 2. Assuming a flat Universe with Ωm = 0.3 and h = 0.7, compute the expected µ for each of
them.

5. Using a Gaussian random number generator routine, add an error to µ for each supernova, drawn from a
Gaussian distribution with mean 0 and standard deviation σ = 0.1 (magnitudes).

6. Plot these data on a graph, with error bars, and overplot theory curves for Ωm = 0.3 and h ∈ {0.6, 0.7, 0.8}.
Data points should scatter around the correct theoretical curve.

V. METROPOLIS-HASTINGS SAMPLING

1. First assume a flat Universe and use the fitting formula for D∗
L. Assume that the observational errors are

Gaussian, i.e. that the likelihood of the problem is

L ∝ exp

−1

2

N∑
i,j=1

[µi − µth(zi)]C
−1
ij [µj − µth(zj)]

 , (10)

where µth is the theoretical value of the distance modulus. Write a routine giving the log-likelihood as a
function of parameters Ωm and h. What is the log-likelihood for (Ωm, h) = (0.3, 0.7)?

2. Assume uniform priors on the parameters and write a Metropolis-Hastings sampler for the likelihood. For
the proposal distribution, you may like to start with a very simple ‘top-hat’ distribution, where the new
point is selected from a rectangular region centred on the old point. You may also use a Gaussian proposal
distribution for each parameter.
Reminder: the Metropolis-Hastings algorithm is given below. The Hastings ratio is defined by

Algorithm 1: Metropolis-Hastings sampler
begin

initialise x(0);
for i = 1 to n do

x∗ ↶ q(x∗|x) (proposal distribution);
α ↶ U(0, 1) (uniform distribution);
if α < min [1, r(x,x∗)] then

x(i) = x∗;
else

x(i) = x(i−1);
end

end
return (x(0), . . . ,x(n));

end

2 See http://supernovae.in2p3.fr/sdss_snls_jla/ReadMe.html for more details.

https://cloud.aquila-consortium.org/s/5EapLKn7AHzqARk
https://cloud.aquila-consortium.org/s/wbjYixKq3dtaseK
https://colab.research.google.com/
https://cloud.aquila-consortium.org/s/5EapLKn7AHzqARk
http://supernovae.in2p3.fr/sdss_snls_jla/ReadMe.html
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r(x,x∗) ≡ p(x∗)

p(x)

q(x|x∗)

q(x∗|x) . (11)

In the case of a symmetric proposal distribution (i.e. q(x∗|x) = q(x|x∗), a Metropolis update), it simplifies
to

r(x,x∗) =
p(x∗)

p(x)
. (12)

3. Produce a ‘trace plot’ for each parameter (i.e. plot the value of Ωm and h as a function of the position in
the chain), for a maximum of 1000 trials. Compute the acceptance ratio of your chain. Estimate visually
the length of the burn-in phase.

4. Explore visually the chain when you have (a) a very small proposal distribution, (b) an intermediate proposal
distribution and (c) a very large proposal distribution. Compute the acceptance ratio for each situation.
What do you conclude?

5. Once you have settled on a reasonable proposal distribution, run five different chains with different starting
points. Produce the trace plots of the different chains on the same graph, for each parameter. Can you
make a more precise statement about the burn-in phase?

6. Compute the Gelman-Rubin statistic R̂ (Gelman & Rubin, 1992) using your five chains. Deduce roughly
how long the chains should be for convergence.
Reminder (see Gelman et al., Bayesian Data Analysis (third edition), p. 284-285): if m is the number of
chains and n is the length of chains, one can define a “between” chains variance as

B ≡ n

m− 1

m∑
j=1

(
ψ̄.j − ψ̄..

)2
where ψ̄.j =

1

n

n∑
i=1

ψij and ψ̄.. =
1

m

m∑
j=1

ψ̄.j , (13)

and a “within” chains variance:

W ≡ 1

m

m∑
j=1

s2j where s2j =
1

n− 1

n∑
i=1

(
ψij − ψ̄.j

)2
. (14)

Estimators of the marginal posterior variance of the estimand are

v̂ar
− ≡W, (15)

which underestimates the variance, and

v̂ar
+ ≡ n

n− 1
W +

1

n
B, (16)

which overestimates the variance. The potential scale reduction factor (PSRF) is defined as

R̂ ≡

√
v̂ar

+

v̂ar
− , (17)

and the Gelman-Rubin convergence test consists in checking that R̂→ 1 as n→ ∞.

7. Compute the mean value of the parameters under the likelihood distribution, and their variances and
covariance. On a 2D plot, show your samples and overplot 68%, 95%, and 99% likelihood contours.

VI. IMPORTANCE SAMPLING

Consider a non-flat prior, so that the target posterior distribution now differs from the likelihood. It is still
possible to sample from the likelihood (as you have been doing in the previous section) and construct the posterior
by weighting the samples with the prior to get the target posterior distribution. This is an example of importance
sampling, where we sample from a different distribution from the one we eventually want.

1. Apply a Gaussian prior on the Hubble parameter h to your chain, with mean 0.738 and standard deviation
0.024, to get the weights for your existing samples.

2. On the same 2D plot, show your samples coloured according to their weight, likelihood contours, and
posterior contours.

3. Compute the mean Ωm and h with and without the prior.



5

VII. HAMILTONIAN MONTE CARLO SAMPLING

Extend to perform Hamiltonian Monte Carlo (HMC). The algorithm is (e.g. Hajian, 2007)

Algorithm 2: Hamiltonian Monte Carlo sampler
begin

initialise x(0);
for i = 1 to n do

p ↶ N (0, 1) (normal distribution);
(x∗

(0),p
∗
(0)) = (x(i−1),p);

for j = 1 to Nsteps do
make a leapfrog move: (x∗

(j−1),p
∗
(j−1)) → (x∗

(j),p
∗
(j));

end
(x∗,p∗) = (x(Nsteps),p(Nsteps)

);
α ↶ U(0, 1) (uniform distribution);

if α < min
(
1, exp

{
−
[
H(x∗,p∗)−H(x∗

(0),p
∗
(0))

]})
then

x(i) = x∗;
else

x(i) = x(i−1);
end

end
return (x(0), . . . ,x(n));

end

The Hamiltonian of the system is

H = U +K, (18)

with a kinetic energy K ≡ p⊺M−1p/2 (for a given mass matrix M) and potential energy U ≡ − lnP − lnL, where
P is the prior. The leapfrog or kick-drift-kick algorithm (which is forward-backward symmetric, as required to
preserve detailed balance) is, for any time step t,

pk

(
t+

ϵ

2

)
= pk(t)−

ϵ

2

∂U

∂xk

∣∣∣∣
x(t)

(19)

xk(t+ ϵ) = xk(t) + ϵ pk

(
t+

ϵ

2

)
(20)

pk (t+ ϵ) = pk

(
t+

ϵ

2

)
− ϵ

2

∂U

∂xk

∣∣∣∣
x(t+ϵ)

. (21)

1. The partial derivative of U with respect to h is easy to compute, but the partial derivative with respect to
Ωm is complicated. Decide if you want to use exact or approximate derivatives.

1a. Use an automatic differentiation package to obtain the exact derivatives of U . Sympy (https://www.sympy.
org/) is one way to differentiate U automatically and produce the python code. Other options include Jax
and autograd.

1b. Alternatively, it is possible to approximate U by a bivariate Gaussian distribution, with a mean x̄ and
covariance matrix Σ estimated from the chains obtained with the Metropolis-Hastings MCMC code:

U ≈ 1

2

∑
α,β

(x− x̄)αΣ
−1
αβ(x− x̄)β , (22)

from which analytical derivatives ∂U/∂xα are easily obtained. Since it is approximate, the Hamiltonian H
will not be exactly conserved, but the Metropolis update step sorts everything out. Implement routines to
get the exact potential, the approximate potential, and its derivatives. Plot 2D surfaces of these quantities
and visually check the quality of the approximation.

2. Implement a Hamiltonian Monte Carlo sampler and run a few chains. Try changing the starting point
and visualising trajectories in parameter space. Diagnose the chains using trace plots and compute their
acceptance ratio.

3. For each parameter, compute the correlation length of the chain and the effective sample size. Definitions
and a python code to compute autocorrelation lengths can be found, for example, at https://emcee.
readthedocs.io/en/stable/tutorials/autocorr/.

https://www.sympy.org/
https://www.sympy.org/
https://emcee.readthedocs.io/en/stable/tutorials/autocorr/
https://emcee.readthedocs.io/en/stable/tutorials/autocorr/
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4. Try changing the step size ϵ and the mass matrix M. What happens if one parameter is much ‘heavier’ than
the other? Try changing the number of leapfrog steps Nsteps and randomising it (for example by drawing
Nsteps uniformly in J1, Nsteps,maxK). For each case, diagnose the chains using trace plots, acceptance ratio,
and correlation length. What do you conclude?

5. Compare the performance of Metropolis-Hastings MCMC and HMC by plotting the effective sample size
versus the number of function evaluations. ‘Function’ here refers to either the posterior (or potential) or
one of its derivatives (we assume for simplicity that evaluating the potential or one of its derivatives has
the same numerical cost). You will have to modify your samplers to keep track of the number of calls to
each function.

VIII. THREE-PARAMETER PROBLEM AND USE OF AN EMULATOR

Generalise to non-flat universes and include ΩΛ as a free parameter:

1. You will need to perform the integral forD∗
L(Ωm,ΩΛ) numerically. What is the value ofD∗

L(h = 1,Ωm = 0.3)
(using the fitting formula), D∗

L(h = 1,Ωm = 0.3,ΩΛ = 0.7) (computing the integral), and D∗
L(h = 1,Ωm =

0.3,ΩΛ = 0.71)?

2. You may find that computing the integral is too expensive to be put in a MCMC sampler. Write an emulator
of the data model: pre-compute D∗

L(Ωm,ΩΛ) on a grid for (Ωm,ΩΛ) spanning [0, 1]2, use a 2D bilinear
interpolation routine to predict D∗

L(Ωm,ΩΛ), and replace the numerical integrator by the interpolator in
your routine giving µ. You only need to do this at the N redshifts of the data vector.

3. Write 3D routines for your log-prior and log-likelihood. Write a 3D Metropolis-Hasting sampler.

4. Run and diagnose some Markov chains using trace plots. Produce a ‘triangle plot’ showing samples and 2D
contours for each pair of parameters.

5. Compute the posterior covariance matrix and try to feed it back to the sampler as covariance of a Gaussian
proposal distribution.
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