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This exercise focuses on Bayesian inference for the mean µ and variance σ2 of a Gaussian signal using
the Gaussian-inverse-Gamma distribution as a conjugate prior. The goal is to derive the posterior us-
ing implicit likelihood inference and compare to the result obtained analytically. We also explore the
effect of data compression on inference quality and compare models using Bayesian evidence. Approxi-
mate Bayesian Computation (ABC) is applied with both standard and score-compressed statistics, while
information-theoretic measures (e.g., mutual information) are used to evaluate compression efficiency.

Key concepts:
• Conjugate priors and the Gaussian-inverse-Gamma distribution
• Sufficient statistics
• Approximate Bayesian computation
• Score compression and Fisher-Rao distance
• Information theory for quantifying compression quality
• Bayesian model comparison

I. PROBLEM

The Gaussian-inverse-Gamma distribution is a four-parameter family of bivariate probability density functions
(pdfs). Suppose that µ ∼ G

(
η, σ2

λ

)
and σ2 ∼ Γ−1(α, β), then by definition, (µ, σ2) follows a Gaussian-inverse-

Gamma distribution with parameters (η, λ, α, β), denoted GΓ−1(η, λ, α, β). The pdf is given by:

GΓ−1(µ, σ2|η, λ, α, β) =
√
λ√

2πσ2
· βα

Γ(α)

(
1

σ2

)α+1

exp

(
−2β + λ(µ− η)2

2σ2

)
, (1)

for λ > 0, α > 0, β > 0. Recall the usual Gaussian (with mean µ and variance σ2), Gamma (with shape α > 0
and scale θ > 0), and inverse-Gamma (with shape α > 0 and scale β > 0) pdfs:

G(x|µ, σ2) =
1√
2πσ2

exp

[
− (x− µ)2

2σ2

]
, (2)

Γ (x|α, θ) = 1

Γ(α)θα
xα−1exp

(
−x

θ

)
, (3)

Γ−1(x|α, β) = βα

Γ(α)
x−α−1 exp

(
−β

x

)
(4)

The problem considered is the joint inference of the unknown mean µ and unknown variance σ2 of a Gaussian
signal, from which we have n samples that constitute the observed data dobs.

II. ANALYTIC SOLUTION

1. What is the likelihood p(dobs|µ, σ2) for this problem?

2. Show that the Gaussian-inverse-Gamma distribution is a conjugate prior for this likelihood. Derive the
parameters (η′, λ′, α′, β′) of the posterior in terms of the parameters (η, λ, α, β) of the prior:

η′ =
λη + nΦ1

O

λ+ n
, (5)

λ′ = λ+ n, (6)

α′ = α+
n

2
, (7)

β′ = β +
nλ

λ+ n

(Φ1
O − η)2

2
+

n− 1

2
Φ2

O, (8)
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where

Φ1
obs =

1

n

n∑
k=1

dobs,k, (9)

Φ2
obs =

1

n− 1

n∑
k=1

(
dobs,k − Φ1(dobs)

)2
. (10)

(11)

3. Assume the ground truth values µtrue = 0.8 and σ2
true = 2.9. Assume a prior with parameters (η, λ, α, β) =

(0, 6, 22, 54). Give numerical values for the parameters (η′, λ′, α′, β′) of the posterior. Plot the analytical
result of the problem (you can plot, for example, the 68%, 95% and 99% credible regions of the prior and
the posterior in the µ-σ2 plane, see appendix A1).

III. DATA COMPRESSION

1. For implicit likelihood inference, we are going to need to compress the data into summary statistics. We
are going to use the empirical mean and empirical variance of the data, i.e.

Φ1(d) =
1

n

n∑
k=1

dk, (12)

Φ2(d) =
1

n− 1

n∑
k=1

(
dk − Φ1(d)

)2
. (13)

Prove that Φ = (Φ1(d),Φ2(d)) is a sufficient statistic for the problem, i.e. p(µ, σ2|d) = p(µ, σ2|Φ). For
this, you can use the Neyman-Fisher factorisation theorem, which states that a statistic Φ(d) is sufficient
for parameters θ if we can write the likelihood p(d|θ) in the form

p(d|θ) = g (Φ(d),θ)h(d), (14)

where the function h(d) does not depend on the parameters.

2. Furthermore, show that the distributions of Φ1(d) and Φ2(d) have the following closed form:

Φ1 ∼ G
(
µ,

σ2

n

)
, (15)

Φ2 ∼ Γ

(
n− 1

2
,
2σ2

n− 1

)
. (16)

IV. SIMULATIONS

1. Express the forward problem of generating Φ given (η, λ, α, β) as a Bayesian hierarchical model. Represent
the model graphically using a directed acyclic graph (DAG).

2. Implement a simulator that accepts as input η, λ, α, β, and returns simulated data d. Write a compressor
that compresses data d to Φ using equations (12) and (13).

3. Run a single simulation at the ground truth values µtrue = 0.8 and σ2
true = 2.9 to generate your mock data

dobs. What is the value of Φobs, the compression of your mock data?

4. Choose some values of µ and σ2, run some simulations and compress them. Make an histogram of Φ1 and
Φ2 and overplot the theoretical distribution given by equations (15) and (16).

5. Make a scatter plot of simulated Φ and overplot Φobs.

V. IMPLICIT LIKELIHOOD INFERENCE VIA APPROXIMATE BAYESIAN COMPUTATION

1. Given your simulator, your compressor, and some threshold ε > 0, develop an Approximate Bayesian
Computation (ABC) code, to perform the inference of (µ, σ2) given dobs. Specify the distance you are using
between simulated and observed statistics.



3

2. Run your algorithm to infer µ and σ2 for different, decreasing values of ε. How does your acceptance rate
vary as a function of your threshold? Plot your results. You may show the samples and/or credible contours
estimated from your samples (see appendix A 2).

3. Experiment with the choice of summary statistics. You may, for example, drop either Φ1 or Φ2 from Φ.
How does this affect your ABC results?

VI. SCORE COMPRESSION

1. Define an expansion point as the mode of your prior. Run simulations at the expansion point and visualise
them.

2. Write a score compressor at this expansion point using the equations given in the lectures. You may want
to involve a simplifying assumption and evaluate numerically the necessary quantities, e.g. using finite
differences in a set of simulations. We denote the score-compressed statistics as Ψ.

VII. INFORMATION THEORY AND INFORMATION GEOMETRY

1. Estimate the mutual information between Φ and d, using a set of simulations. Similarly, estimate the
mutual information between the score-compressed data Ψ and the full data d. How good is the score
compression with respect to the compression to the sufficient summary statistics?

2. Using the Mahalanobis distance, how far are the ground truth and the maximum a posteriori values from
your prior? How far is the expansion point from the posterior?

3. Using the Fisher information matrix that appeared in your score compressor, write a function to compute
the Fisher-Rao distance between two score-compressed data vectors.

VIII. IMPLICIT LIKELIHOOD INFERENCE, AGAIN

1. Modify your ABC algorithm to use the score-compressed data Ψ rather than Φ, and to use the Fisher-Rao
distance rather than the distance you previously chose.

2. Run your algorithm to infer µ and σ2 for different, decreasing values of the threshold ε. Compare to the
posteriors obtained section V for a given simulation budget. What do you conclude regarding the quality
of the compression?

IX. BAYESIAN MODEL COMPARISON

Suppose we have two models: M1 (the model used so far) has two free parameters µ and σ2, and M0 is a
simpler model where the variance is fixed to a given value σ2 = σ2

0 .

1. Is it possible to compute the evidence for M0 and M1 analytically? You may want to refer to the calculation
of the evidence in the case of the Laplace approximation. What is the result of Bayesian model comparison
for your observed dobs, given different values of σ2

0?

2. Show that M0 and M1 are nested models and that the Bayes factor is given by the Savage-Dickey density
ratio. Compute it numerically. Do you get to the same conclusion?

A. USEFUL PIECES OF CODE

1. Plotting contours

To visualise the 68%, 95% and 99% credible regions of a two-dimensional pdf using Matplotlib, you can use
the following approach:

1 import numpy as np
2 import matplotlib.pyplot as plt
3

4 def get_contours(Z, nBins , confLevels =(.3173 , .0455, .0027)):
5 Z /= Z.sum()
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6 nContourLevels = len(confLevels)
7 chainLevels = np.ones(nContourLevels +1)
8 histOrdered = np.sort(Z.flat)
9 histCumulative = np.cumsum(histOrdered)

10 nBinsFlat = np.linspace (0., nBins **2, nBins **2)
11

12 for l in range(nContourLevels):
13 # Find location of contour level in 1d histCumulative
14 temp = np.interp(confLevels[l], histCumulative , nBinsFlat)
15 # Find "height" of contour level
16 chainLevels[nContourLevels -1-l] = np.interp(temp , nBinsFlat , histOrdered)
17

18 return chainLevels
19

20 mu_s = np.linspace(bounds[’mu’][0], bounds[’mu’][1], meshsize)
21 sigma_sq_s = np.linspace(bounds[’sigma_sq ’][0], bounds[’sigma_sq ’][1], meshsize)
22 mu_g , sigma_sq_g = np.meshgrid(mu_s ,sigma_sq_s)
23 prior_g = prior_pdf(mu_g , sigma_sq_g , eta , lambda_ , alpha , beta)
24 prior_g /= prior_g.sum()
25 prior_contours = get_contours(prior_g , meshsize)
26

27 plt.figure ()
28 plt.contour(mu_g , sigma_sq_g , prior_g , levels=prior_contours)

2. Estimating the density from samples

To estimate the 68%, 95% and 99% credible regions of a two-dimensional pdf based on samples, first construct a
2D histogram. Then, use the function provided in A1 to extract and plot the contours. For improved visualisation,
you may optionally apply a Gaussian filter. Experiment to determine an appropriate variance for the filter. The
following code snippet serves as an example:

1 nBins =30
2 mu_s = np.linspace(bounds[’mu’][0], bounds[’mu’][1], nBins)
3 sigma_sq_s = np.linspace(bounds[’sigma_sq ’][0], bounds[’sigma_sq ’][1], nBins)
4 mu_g , sigma_sq_g = np.meshgrid(mu_s ,sigma_sq_s)
5

6 rejection_g , xedges , yedges = np.histogram2d(rejection_samples.T[1], rejection_samples.T[0],
bins=nBins , range =[[ bounds[’sigma_sq ’][0], bounds[’sigma_sq ’][1]] ,[bounds[’mu’][0], bounds[’
mu’][1]]])

7 rejection_g /= rejection_g.sum()
8 rejection_g = scipy.ndimage.gaussian_filter(rejection_g , sigma =1)
9 rejection_contours = get_contours(rejection_g , nBins)

10

11 plt.figure ()
12 plt.contour(mu_g , sigma_sq_g , rejection_g , levels=rejection_contours)
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