Gaussian signals exercise — Analytic derivations

April 8, 2025

1 Analytic posterior

We wish to estimate the unknown mean p and variance o2 of a Gaussian signal
given n independent samples

dobs = {dobs,17 dobs,27 v 7dobs,n}-

We assume that, conditioned on i and o2, the data are independent and iden-
tically distributed (i.i.d.) Gaussian random variables. In addition, our prior on
(u,0?) is taken as a Gaussian-inverse-Gamma,

(1, 0%) ~ GI' (0, A, o, B),

whose density is
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with A >0, a > 0, and 8 > 0.
Below we detail the solution step by step.

1.1 Likelihood p(dgps|p, 0?)

Because every observation is drawn independently from the Gaussian

1 d— p)?
g(dlu,02)=mexp (—(202@)

the joint likelihood is the product of these factors:
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Thus, the likelihood is:
n 1 <
p(dobs| i, 02) = (2m02) ™2 exp l_w Z(dobs,k- - M)Q] .
k=1




1.2 Conjugacy of the Gaussian—Inverse-Gamma Prior
Step 1: Writing the Joint Density
Our prior on (u,0?) is
p(,u 02) — \/X . 6a i o exp 7>‘(:U‘777)2+25
’ Vore?2 T(a) \ o2 202 '

The joint posterior is proportional to the product of the likelihood and the
prior:

U2|dobs) X p(dobs‘,uw 0'2)]9(/1, 02)
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Step 2: Completing the Square in p
To show conjugacy, we must rearrange the exponent so that it appears as a
quadratic form in p. We start with

Mp—n)*+ Z(dobs,k — p)?
=1

It is convenient to introduce the sample mean:

obs Z dobs k-

Also, note the following expansion:
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n n

Z(dobs,k - M)2 = Z [(dobs,k - (I)cl)bs) + ((I)(l)bs - M)]Q
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since the cross term vanishes (by definition of the sample mean).
Thus,
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term independent of p

We now complete the square with respect to p in

/\( ) +’I’L(/J, (I)obs) :

Write: )
AMp—n)?+n(p—05)° =A+n)(p—n")" +C,



where

, )\77 +nd®l,
Atn
and the constant C' (which does not depend on p) is
An
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Thus, the exponent in the posterior becomes
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Step 3: Identifying the Updated Parameters
Now, grouping the terms, the joint posterior may be written (ignoring mul-
tiplicative factors not involving u and o?) as

P11, 02| dons) o (%)~ (@FE ) exp (‘giz (A +n)(u—n")?+ 25’]> :

where we define
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It is customary to write the sum of squares in terms of the unbiased sample
variance estimator. Notice that
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so that
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Thus, we identify the updated parameters of the Gaussian—inverse-Gamma
posterior:
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These updated parameters confirm that the posterior is also a Gaussian-inverse-
Gamma distribution with parameters (', X', o/, ).
Below is a detailed solution to the two questions.



2 Data compression

2.1 Sufficiency of the Statistics

Using the Neyman—Fisher Factorization Theorem
The factorization theorem states that a statistic ®(d) is sufficient for pa-
rameters (u,0?) if we can write the likelihood p(d|u, o?) in the form

p(dln, o) = g(®(d), 1,0%) h(d),

where the function h(d) does not depend on the parameters.
Step-by-Step Factorization
For n independent samples from N '(u, 0?), the likelihood is

p(d|p, 0?) = (27702)_ exp{ i }

A standard algebraic manipulation uses the identity

n

Zn: (di — Z(dk—@1)2+n(¢l—u)2
k=1
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data dispersion

Thus we can rewrite the likelihood as:

o n 1 —
p(d|p,0%) = (2m0®) "/ exp{—@(fbl - u)2} exp{—zag > (dy — 4>1)2} :
k=1

Notice here that: - The first exponential factor involves only the parameters
u, 0% and the empirical mean ®!(d). - The second exponential depends on the
data only through > ;_, (dj, — ®')?, which is exactly linked (by a multiplicative
constant) to the sample variance ®2(d).

In more detail, since

3

k=1

we have
n

D (di = ®1)? = (n—1)®*(d).

k=1
Hence, the likelihood can be written as:

n n n—1) o2
p(dlp,0%) = (250%) /2 exp o (@' — )2 exp{—(%ﬁ} ,

which now clearly factors into a function g(@l(d), ®2(d), u, 02) that depends

on the parameters and the summary statistics and a function h(d) (in this case,
merely a constant with respect to u,?). Thus, by the factorization theorem,
(@1, ®2) is a sufficient statistic.



2.2 Distributions of ®!(d) and ®?(d)

We now derive the closed forms for the distributions of the empirical mean and
variance.

1. Distribution of ®*

Given that each dj, is independently distributed as A (u,0?) and using the
standard result about sums of independent Gaussians, the sample mean

1 n
d'(d) = - > dy
k=1

follows a Gaussian distribution with mean g and variance

o2
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n

o2
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2. Distribution of ®2
Recall that the sample variance is given by

1 n
— > (di — @1)%.
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That is,

®?(d) =

A classical result in statistics is that if d, ~ N (i, 0?) independently, then

(n—1)®?
Q2 Xn—1>

i.e. it is chi-squared distributed with n — 1 degrees of freedom. A chi-squared
distribution with k degrees of freedom is a special case of the Gamma distribu-

tion: L
2
~I(=,2
Xk <27 )7

where the Gamma pdf is parametrised by a shape parameter (here, k/2) and a
scale parameter (here, 2).
It then follows by a change of variable that

q)QNF(n_l 202 )

2 '"n—-1

That is, the pdf of ®2 is given by

n—1

p(@?) = F(ll) (n2;21> : <¢2)T—1eXP<_W;:Q¢2).

Thus
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