
Gaussian signals exercise – Analytic derivations

April 8, 2025

1 Analytic posterior

We wish to estimate the unknown mean µ and variance σ2 of a Gaussian signal
given n independent samples

dobs = {dobs,1, dobs,2, . . . , dobs,n}.

We assume that, conditioned on µ and σ2, the data are independent and iden-
tically distributed (i.i.d.) Gaussian random variables. In addition, our prior on
(µ, σ2) is taken as a Gaussian-inverse-Gamma,

(µ, σ2) ∼ GΓ−1(η, λ, α, β),

whose density is

GΓ−1(µ, σ2|η, λ, α, β) =
√
λ√

2πσ2
· βα

Γ(α)

(
1

σ2

)α+1

exp

(
−2β + λ(µ− η)2

2σ2

)
,

with λ > 0, α > 0, and β > 0.
Below we detail the solution step by step.

1.1 Likelihood p(dobs|µ, σ2)

Because every observation is drawn independently from the Gaussian

G(d|µ, σ2) =
1√
2πσ2

exp

(
− (d− µ)2

2σ2

)
,

the joint likelihood is the product of these factors:

p(dobs|µ, σ2) =

n∏
k=1

1√
2πσ2

exp

(
− (dobs,k − µ)2

2σ2

)

= (2πσ2)−n/2 exp

(
− 1

2σ2

n∑
k=1

(dobs,k − µ)2

)
.

Thus, the likelihood is:

p(dobs|µ, σ2) = (2πσ2)−n/2 exp

[
− 1

2σ2

n∑
k=1

(dobs,k − µ)2

]
.
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1.2 Conjugacy of the Gaussian–Inverse-Gamma Prior

Step 1: Writing the Joint Density
Our prior on (µ, σ2) is

p(µ, σ2) =

√
λ√

2πσ2
· βα

Γ(α)

(
1

σ2

)α+1

exp

(
−λ(µ− η)2 + 2β

2σ2

)
.

The joint posterior is proportional to the product of the likelihood and the
prior:

p(µ, σ2|dobs) ∝ p(dobs|µ, σ2)p(µ, σ2)

∝ (2πσ2)−n/2 exp

(
− 1

2σ2

n∑
k=1

(dobs,k − µ)2

)
· 1√

σ2

(
1

σ2

)α+1

exp

(
−λ(µ− η)2 + 2β

2σ2

)

∝ (σ2)−(α+
n
2 +1) exp

{
− 1

2σ2

[
λ(µ− η)2 +

n∑
k=1

(dobs,k − µ)2 + 2β

]}
.

Step 2: Completing the Square in µ
To show conjugacy, we must rearrange the exponent so that it appears as a

quadratic form in µ. We start with

λ(µ− η)2 +

n∑
k=1

(dobs,k − µ)2.

It is convenient to introduce the sample mean:

Φ1
obs =

1

n

n∑
k=1

dobs,k.

Also, note the following expansion:

n∑
k=1

(dobs,k − µ)2 =

n∑
k=1

[
(dobs,k − Φ1

obs) + (Φ1
obs − µ)

]2
=

n∑
k=1

(dobs,k − Φ1
obs)

2 + n(Φ1
obs − µ)2,

since the cross term vanishes (by definition of the sample mean).
Thus,

λ(µ− η)2 +

n∑
k=1

(dobs,k − µ)2 = λ(µ− η)2 + n(µ− Φ1
obs)

2 +

n∑
k=1

(dobs,k − Φ1
obs)

2

︸ ︷︷ ︸
term independent of µ

.

We now complete the square with respect to µ in

λ(µ− η)2 + n(µ− Φ1
obs)

2.

Write:
λ(µ− η)2 + n(µ− Φ1

obs)
2 = (λ+ n) (µ− η′)

2
+ C,
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where

η′ =
λη + nΦ1

obs

λ+ n
,

and the constant C (which does not depend on µ) is

C =
λn

λ+ n
(Φ1

obs − η)2.

Thus, the exponent in the posterior becomes

− 1

2σ2

{
(λ+ n)(µ− η′)2 +

λn

λ+ n
(Φ1

obs − η)2 +

n∑
k=1

(dobs,k − Φ1
obs)

2 + 2β

}
.

Step 3: Identifying the Updated Parameters
Now, grouping the terms, the joint posterior may be written (ignoring mul-

tiplicative factors not involving µ and σ2) as

p(µ, σ2|dobs) ∝ (σ2)−(α+
n
2 +1) exp

(
− 1

2σ2

[
(λ+ n)(µ− η′)2 + 2β′]) ,

where we define

2β′ = 2β +
λn

λ+ n
(Φ1

obs − η)2 +

n∑
k=1

(dobs,k − Φ1
obs)

2.

It is customary to write the sum of squares in terms of the unbiased sample
variance estimator. Notice that

Φ2
obs =

1

n− 1

n∑
k=1

(dobs,k − Φ1
obs)

2,

so that
n∑

k=1

(dobs,k − Φ1
obs)

2 = (n− 1)Φ2
obs.

Thus, we identify the updated parameters of the Gaussian–inverse-Gamma
posterior:

η′ =
λη + nΦ1

obs

λ+ n
,

λ′ = λ+ n,

α′ = α+
n

2
,

β′ = β +
nλ

2(λ+ n)
(Φ1

obs − η)2 +
n− 1

2
Φ2

obs.

These updated parameters confirm that the posterior is also a Gaussian-inverse-
Gamma distribution with parameters (η′, λ′, α′, β′).

Below is a detailed solution to the two questions.
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2 Data compression

2.1 Sufficiency of the Statistics

Using the Neyman–Fisher Factorization Theorem
The factorization theorem states that a statistic Φ(d) is sufficient for pa-

rameters (µ, σ2) if we can write the likelihood p(d|µ, σ2) in the form

p(d|µ, σ2) = g
(
Φ(d), µ, σ2

)
h(d),

where the function h(d) does not depend on the parameters.
Step-by-Step Factorization
For n independent samples from N (µ, σ2), the likelihood is

p(d|µ, σ2) =
(
2πσ2

)−n
2

exp

{
− 1

2σ2

n∑
k=1

(dk − µ)2

}
.

A standard algebraic manipulation uses the identity

n∑
k=1

(dk − µ)2 =

n∑
k=1

(dk − Φ1)2︸ ︷︷ ︸
data dispersion

+n
(
Φ1 − µ

)2
.

Thus we can rewrite the likelihood as:

p(d|µ, σ2) = (2πσ2)−n/2 exp
{
− n

2σ2
(Φ1 − µ)2

}
exp

{
− 1

2σ2

n∑
k=1

(dk − Φ1)2

}
.

Notice here that: - The first exponential factor involves only the parameters
µ, σ2 and the empirical mean Φ1(d). - The second exponential depends on the
data only through

∑n
k=1(dk −Φ1)2, which is exactly linked (by a multiplicative

constant) to the sample variance Φ2(d).
In more detail, since

Φ2(d) =
1

n− 1

n∑
k=1

(dk − Φ1)2,

we have
n∑

k=1

(dk − Φ1)2 = (n− 1)Φ2(d).

Hence, the likelihood can be written as:

p(d|µ, σ2) = (2πσ2)−n/2 exp
{
− n

2σ2
(Φ1 − µ)2

}
exp

{
− (n− 1)Φ2

2σ2

}
,

which now clearly factors into a function g
(
Φ1(d),Φ2(d), µ, σ2

)
that depends

on the parameters and the summary statistics and a function h(d) (in this case,
merely a constant with respect to µ, σ2). Thus, by the factorization theorem,
(Φ1,Φ2) is a sufficient statistic.
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2.2 Distributions of Φ1(d) and Φ2(d)

We now derive the closed forms for the distributions of the empirical mean and
variance.

1. Distribution of Φ1

Given that each dk is independently distributed as N (µ, σ2) and using the
standard result about sums of independent Gaussians, the sample mean

Φ1(d) =
1

n

n∑
k=1

dk

follows a Gaussian distribution with mean µ and variance

Var(Φ1) =
σ2

n
.

That is,

Φ1 ∼ G
(
µ,

σ2

n

)
.

2. Distribution of Φ2

Recall that the sample variance is given by

Φ2(d) =
1

n− 1

n∑
k=1

(dk − Φ1)2.

A classical result in statistics is that if dk ∼ N (µ, σ2) independently, then

(n− 1)Φ2

σ2
∼ χ2

n−1 ,

i.e. it is chi-squared distributed with n − 1 degrees of freedom. A chi-squared
distribution with k degrees of freedom is a special case of the Gamma distribu-
tion:

χ2
k ∼ Γ

(
k

2
, 2

)
,

where the Gamma pdf is parametrised by a shape parameter (here, k/2) and a
scale parameter (here, 2).

It then follows by a change of variable that

Φ2 ∼ Γ

(
n− 1

2
,

2σ2

n− 1

)
.

That is, the pdf of Φ2 is given by

p(Φ2) =
1

Γ
(
n−1
2

) (n− 1

2σ2

)n−1
2

(Φ2)
n−1
2 −1 exp

(
− (n− 1)Φ2

2σ2

)
.

Thus,

Φ2 ∼ Γ

(
n− 1

2
,

2σ2

n− 1

)
.

5


