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Dynamical evolution of the universe from first instant to present time

Image credit: Planck collaboration
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Cosmological context: current paradigm
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Present model: 
ΛCDM = 7 parameters !

Ωm, Ωb, Λ, ns, AS, H0, 𝞽

matter, baryon, dark energy, inflation (1 and 2), expansion, reionization

Cosmological context: current paradigm
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Observations of large scale structures of the Universe
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Mapping the Universe
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Photometry Spectrometry

Angular position

Redshift z

Distance
"3D Position"

Mapping the Universe



ΛCDM model at the basis of the present paradigm is under tension

A special time with potential of discovery

7

... and only using 2 or 3-point statistics ! What lurks beyond?

Abdalla et al. (2022, JHEA)

Local Expansion of the Universe (H0) Small scale dynamics
S8=f(Ωm, σ8)

Early Universe

Late Universe
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... and only using 2 or 3-point statistics ! What lurks beyond?

Abdalla et al. (2022, JHEA)

Local Expansion of the Universe (H0) Small scale dynamics
S8=f(Ωm, σ8)

Early Universe

Late Universe

Opportunities / Problems / Objectives

Delivery of massive new datasets

Absolute volume of observable universe is limited

Direct information on primordial universe is low

Do better than 2- or 3- points statistics with modern data 
assimilation techniques

Potential for discovery of new physics



Survey challenges: spectroscopy
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● New surveys = more 
complicated data 
processing, e.g. slitless 
spectroscopy 

Example: a good galaxy spectrum



Survey challenges: spectroscopy

10
Euclid NISP-S simulated exposure, 

with Ha lines marked (B. Granett & e2e group)

● New surveys = more 
complicated data 
processing, e.g. slitless 
spectroscopy 



Survey challenges: huge data volume
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Flagship 2 simulation



Survey challenges: computational power is not scaling as fast...
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Flagship 2 simulation



How to address this challenge ?

● Emulation technologies

● Better inference techniques



• Emulators (simulator accelerated with ML):
• Lyman alpha forest baryon
• LPT + ML with displacement
• BAM, PineTree, and CHARM
• + lots of others at level of summaries (CosmoPower, BACCO, ...)

• Inferers (inference accelerated with ML):
• SELFI
• ILI
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Outline: two main topics of research



1 Neural Field emulator

super cheap 
high resolution 

dark matter simulation

15



ABC of running N-body simulation
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Ω
Structure Formation ModelPrior Model



How to get N-body simulations without paying the cost?
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Idea: make an expansion of particle displacement

Final Position = 
Initial + Analytic + Neural network

Two examples:

● LPT+NN
● NECOLA (tCOLA+NN) 



LPT+NN emulator: concept and architecture
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● Analytic displacement = Lagrangian 
displacement field (= Zel'dovich approximation)

● Residuals are trained on Quijote N-body 
simulations (i.e. ~Gadget)

● Advantages:
○ super-fast: > 100x a PM simulation
○ GPU ready

Doeser et al. (2023), Jamieson et al. (2023), de Oliveira et al. (2020)

https://arxiv.org/pdf/2312.09271.pdf
https://iopscience.iop.org/article/10.3847/1538-4357/acdb6c/pdf
https://arxiv.org/abs/2012.00240


Two and Three point statistics for emulator and other solvers
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Mass function with emulators vs other solvers
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LPT+NN emulator: concept and architecture
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● Analytic displacement = Lagrangian 
displacement field (= Zel'dovich approximation)

● Residual is trained on Quijote N-body 
simulations (i.e. ~Gadget)

● Advantages:
○ super-fast: > 100x a PM simulation
○ GPU ready
○ Accuracy!

● Disadvantages:
○ large convolutional kernel (128³+46 for 

padding), thus large GPU memory 
requirements

○ styled with a single cosmological 
parameter (Ωm)

○ not completely explainable
● Other works?

Doeser et al. (2023), Jamieson et al. (2023)

https://arxiv.org/pdf/2312.09271.pdf
https://iopscience.iop.org/article/10.3847/1538-4357/acdb6c/pdf


Other works: NECOLA

22NECOLA (Kaushal et al. 2022)

● Analytic displacement = tCOLA
● Residuals trained again on QUIJOTE set of 

simulations
● Advantages:

○ less cosmology dependent
● Disadvantages:

○ require a costly PM run 

LPT+NNtCOLA+NN

https://ui.adsabs.harvard.edu/abs/2022ApJ...930..115K/abstract


Other works: NECOLA

23NECOLA (Kaushal et al. 2022)

● Analytic displacement = tCOLA
● Residuals trained again on QUIJOTE set of 

simulations
● Advantages:

○ less cosmology dependent
● Disadvantages:

○ require a costly PM run 

tCOLA+NN Test with neutrini

https://ui.adsabs.harvard.edu/abs/2022ApJ...930..115K/abstract


Take home message
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● Accuracy – higher than current forward models in BORG;
percent-level diff with N-body 

● Speed – 100x faster than N-body
● Will likely unlock needed simulations for future survyes



Application: information content of 
Large scale structures using BORG



Bayesian Forward modeling cosmic structure surveys
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Ω
Structure Formation Model Data modelPrior Model 𝜶



Jasche & Lavaux 2019
Jasche & Wandelt 2014

BORG: A large scale MCMC framework
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● BORG’s MCMC framework allows building flexible data models

○ Hierarchical Bayes and block sampling

○ Efficient Hamiltonian Monte Carlo (HMC) technique

○ Fully differentiable physics forward model

https://ui.adsabs.harvard.edu/abs/2019A%26A...625A..64J/abstract
https://ui.adsabs.harvard.edu/abs/2013MNRAS.432..894J/abstract


Neural Field-Level Emulator (Ludvig Doeser, Drew Jamieson)

● Translate approximate LPT displacements to N-body-like displacements
● Differentiability – through autograd (PyTorch)

28
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Neural Field-Level Emulator (Ludvig Doeser, Drew Jamieson)



Information recovery on initial conditions

30
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2 Baryon field emulator:
application to Lyman 

alpha forest



Reminder: what is Lyman-𝛼 forest?

32source E. Wright (https://www.astro.ucla.edu/~wright/Lyman-alpha-forest.html)

Quasar Lyman-𝛼 
emission

Intergalactic 
clouds

Lyman-𝛼 
absorption

Observer

https://www.astro.ucla.edu/~wright/Lyman-alpha-forest.html


Pros/Cons of Lyman-𝛼 forest
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● Pros:
○ More "direct" image of baryon density (wrt Galaxies)
○ Cosmological information
○ Higher redshift = easier to model physics

● Cons:
○ need to model baryon physics
○ non-linear signal
○ bunch of skewers, getting 3d information needs statistical work



Building Ly-𝛼 model from the diffuse IGM

34Gunn & Peterson (1965), Weinberg et al. (1997), Boonkongkird et al. (2023)

log absorption:

cross-section:



Building Ly-𝛼 model from the diffuse IGM
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Equation of state of the IGM

Weinberg et al. (1997), Boonkongkird et al. (2023)



Emulator 1: Lymas2, absorption flux emulation through linear filtering
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Matter field

Gaussianize

Fourier filter

Flux

Peirani et al. (2022)

https://arxiv.org/pdf/2204.06365.pdf


Emulator 2: Non-Local Fluctuating Gunn-Peterson Approx. (w/ Cosmic Web)

37Sinigaglia et al. (2023)

Ai, 𝛼i, δ[1,2]i  = F(cosmic web class of i)

i = 

knotsfilamentspancakesvoids

https://arxiv.org/abs/2305.10428


Emulator 2: Non-Local Fluctuating Gunn-Peterson Approx. (w/ Cosmic Web)

38Sinigaglia et al. (2023)

Absorption power spectra Correlation rate

https://arxiv.org/abs/2305.10428


Emulator 3: LyAl-Net, emulation through non-linear convolution

39Boonkongkird et al. (2023)

https://arxiv.org/pdf/2303.17939.pdf


Emulator 3: LyAl-Net, absorption prediction performance

40



Emulator 3: LyAl-Net, 2 point statistics performance
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Reference
FGPA
NL-FGPA



Take home message
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➢ Deep Learning techniques becoming competitive:
○ can cover cosmological scales
○ LyAl-Net is resilient to change of baryonic physics
○ General resilience to change of cosmology
○ Need work on redshift dependence

➢ Accuracy:
○ tend to favor big networks
○ physics intuition can push down (i.e. use cosmic-web)

➢ Application to new surveys (e.g. SDSS4-QSO, DESI)



3 Populating mock 
universes with 
halos/galaxies
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Dark matter
over-density

halo catalog
prediction

From approximate 
simulators 
(e.g. 2LPT)

● Fast & Differentiable
● Stochastic 
● Explainable
● 17-32 parameters

Validation:
● 1pt
● 2pt
● field-level

Physics 
informed

ML

Ding et al (in prep), Pandey et al. (2024), Charnock et al 2020

PineTree & CHARM (ex-NPE = Neural Physical Engine) 
(S. Ding, S. Pandey, T. Charnock)
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http://www.iap.fr/recherche/groupes/groupes-3.php?nom=grandestruct&langue=en
https://openreview.net/pdf?id=dz3O7M1QzA
https://ui.adsabs.harvard.edu/abs/2020MNRAS.494...50C/abstract


Preliminary
Pinetree: Physical and Interpretable NEtworks for TRacer Estimation/Emulation

45Ding et al. (in prep. 2024)



Training / validation procedure
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● Computed 40 N-body simulations 
○ 500 Mpc/h, 512³ particles
○ mp = 3 x 1012 M

☉

● Training on:
○ baseline: one simulation
○ extended: 10 for training and 30 for validation

● Ideally: no training at all!

Preliminary

Ding et al. (in prep. 2024)



First look: mass function and halo field correlation

47Ding et al. (in prep. 2024)

Preliminary



Second look: n(M), power spectra, bi-spectra

48Ding et al. (in prep. 2024)

Preliminary



Effect of resolution

49Ding et al. (in prep. 2024)

Preliminary



CHARM: Creating Halos with Auto-Regressive Multi-stage networks
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Similar idea as for Pinetree 
but with more 
Deep-Learning

 Pandey et al. (2024)

https://openreview.net/pdf?id=dz3O7M1QzA


Take home message

51

● Possible to generate large halo mock catalogs from rough 
simulations

● Statistics well understood for PineTree
● Scaling possible by going full Machine Learning with 

CHARM



52

4 Running cosmological 
inferences with ML



Motivations / challenges for ILI

● Different model variant:
○ MOPED: massive data compression (expansion of log-likelihood)
○ SELFI: simulator expansion for LFI (expansion of the simulator)
○ BOLFI: Bayesian optimisation for LFI
○ ILI-LTU: Parameter density estimators through LFI/ILI

● Motivations:
○ Purely based on simulation
○ May fold model as complex as needed 

● Challenges:
○ training data
○ robustness
○ parameter space
○ model misspecifications 53

https://florent-leclercq.eu/data.php?page=3
https://github.com/maho3/ltu-ili


SELFI: Simulator Expansion for Likelihood Free Inference

54
Leclercq et al. (2019), Hoellinger & Leclercq (in prep. 2024)

at primordial P(k) expansion point θ0  
+ covariance noise C0 on final summaries

New distribution, Gaussian, for θ:

mean =
 
covariance =

https://florent-leclercq.eu/talks/2019-11-11_Cambridge_DAMTP.pdf

https://arxiv.org/abs/1902.10149


SELFI: Systematic diagnoser from summaries
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Injected systematic effects

Hoellinger & Leclercq (in prep. 2024)

Results on 
parameter



Implicit Likelihood Inference (ILI, aka "SBI" & Likelihood Free Inference)

56inspired from Matt Ho presentation

Simulation

Simulator

Observed data x

Parameters θ 
(e.g. Ωm)

Simulator

Observed data x Parameters θ

Inference

Observed data x

Machine 
Learning

Parameters θ

LtU-ILI ~ 3 algorithms: SNLE, SNPE, NRE Ho et al. (2024)

https://arxiv.org/pdf/2402.05137.pdf


Concept of ILI inference
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● Assuming we have a perfect simulator, we have (data, parameter) 
pairs. How do we do inference?

“Posterior” “Likelihood” “Prior”

Neural Posterior Estimation Neural Likelihood Estimation

Neural Ratio Estimation

Ho et al. (2024)

https://arxiv.org/pdf/2402.05137.pdf


Neural Likelihood Estimation

Concept of ILI inference: NLE
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● Assuming we have a perfect simulator, we have (data, parameter) 
pairs. How do we do inference?

● Fit a model for the likelihood given (data, parameters)
● Train only one model, and evaluate posterior given a prior at 

the cost of additional sampling (e.g. MCMC, VI…)

Ho et al. (2024)

https://arxiv.org/pdf/2402.05137.pdf


Concept of ILI inference: NPE
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● Assuming we have a perfect simulator, we have (data, parameter) 
pairs. How do we do inference?

● Fit a model for the posterior distribution given (data, 
parameter) pairs.

● Directly outputs posterior to compute validation metrics (one 
model trained per prior)

Neural Posterior Estimation

Ho et al. (2024)

https://arxiv.org/pdf/2402.05137.pdf


Concept of ILI inference: NRE
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● Assuming we have a perfect simulator, we have (data, parameter) 
pairs. How do we do inference?

Acceptance Ratio

Neural Ratio Estimation

Ho et al. (2024)

https://arxiv.org/pdf/2402.05137.pdf


Example of an LtU-ILI to cosmology
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Halo power spectrum 
multipole

P
re

d
ic

te
d

P
re

d
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d

ILI

Ho et al. (2024)

https://arxiv.org/pdf/2402.05137.pdf


5 Summary & Outlook
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Large cosmological surveys = very complex to analyse

Rise of the machines is inevitable to continue progressing

Unlocked by GPU hardware with large memory

Rise of the machines

63

non-linear 
dynamics

large 
volume

complex 
selection



Full panorama of ML in cosmology is difficult 
(last conference attracted ~400 people)

Emulation:

● Models validated on large datasets
● Exhibit interesting generalization

Statistical techniques based on ML showing increasing robustness for inference

Limits are:

● validity of simulations
● Resilience to unknown systematics

Opportunities by choosing carefully crafted I/O to neural networks

Rise of the machines

64

https://indico.iap.fr/e/ml-2023

https://indico.iap.fr/e/ml-2023

