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I. THE SLOPE OF THE NUMBER COUNTS OF RADIO SOURCES

The flux densities of extragalactic radio sources is distributed as a power-law with slope −α. In a non-evolving
Euclidean universe α = 3

2 (can you prove this?) and a deviation of α from 3
2 is evidence for cosmological evolution

of radio sources. This was the most telling argument against the steady-state cosmology in the early 1960s (even
though they got the value of α wrong by quite a long way).

1. Derivation of the probability distribution. Assuming a known, fixed detection limit S0, and α > 1, find the
expression for the normalised probability density function (pdf) of the flux density of radio sources.

2. Derivation of the posterior distribution for α. Assume that we have n independent and error-free observa-
tions {Si}ni=1 with each Si ≥ S0. By treating the flux density distribution as a pdf and adopting a uniform
prior for α, derive the likelihood and posterior functions based on the observations. What is the MAP
(maximum a posteriori) value of α (i.e. the value of α that maximises the posterior)?

3. Inference of α. If a single source is observed with flux S1 = 2S0, what is the most probable value of α?
By evaluating the curvature (i.e., the second derivative) of the log-posterior at its maximum, derive the
approximate uncertainty (standard deviation) on α. Explain why it is possible to infer the slope from only
one object.

II. BAYESIAN DECISION THEORY

You’ve completed a Bayesian analysis of a problem, obtaining the posterior probability density function (pdf)
p(θ|d). However, your boss wants a single number, and you need to decide which value to report. Your boss has
offered a bonus of 1000 euros for your analysis, but any error in your reported value will result in a penalty. The
penalty will be the square of the error, converted to euros, and deducted from your next month’s paycheck. The
true value of θ will be revealed next month.

You need to determine the optimal value to report, θ⋆, given the uncertainty represented by the posterior pdf.
This is a classic problem of decision-making under uncertainty.

1. Find the expected net gain as a function of the reported value, θ⋆.

2. Determine the value of θ⋆ that maximises the expected net gain.

3. Check that the optimal reported value is equal to the posterior mean.

III. BAYESIAN LINEAR MODEL: EXPERIMENTAL DESIGN, HIERARCHY, AND PREDICTION

We are interested in a model y = mx. We want to measure the slope m of this relationship.

1. Bayesian experimental design (exercise inspired by ?). Suppose that we have measured two points y0 and
y1 with error σ at two locations x0 and x1. We now have the choice between two (equally expensive)
experiments:

• Instrument (e): As accurate as today’s instrument, it will measure yf at a much larger value xf (so
as to increase the lever arm in the measurement of the slope).

• Instrument (a): Much more accurate instrument, but built so as to have a “sweet spot” at a certain
value of y, called y⋆, and much less accurate elsewhere.
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Experiment (e)
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Experiment (a)

Which instrument should we go for? The answer should probably depend on how good our current knowledge
of m is. Is the current uncertainty on m small enough to target accurately enough x = x⋆ so that we get
to the sweet spot y⋆ = mx⋆? We can use for the utility of experiments (e) and (a) the inverse variance of
the future posterior on m.

(a) Write down the inverse variance of the future posterior on m.
(b) Denoting by o the current experiment, write down the utility for experiment (e), U(e|o).
(c) Assuming for the noise levels of instrument (a) the toy model:

τ2a = τ2⋆ exp

[
(y − y⋆)

2

2∆2

]
, (1)

where ∆ is the width of the sweet spot, show that the utility for experiment (a) is:

U(a|o) = x2
f

τ2⋆
exp

[
−1

2

(m̄xf − y⋆)
2

∆2 +∆2
y

]
+ constant, (2)

where m̄ ≡ ⟨m⟩p(m|o) and ∆y is the uncertainty at xf .

(d) Discuss the best choice of experiment in the two cases where ∆ ≫ ∆y and ∆ ≪ ∆y.
(e) Conclude on the opportunity of designating an experiment that exploits a “sweet spot”.

2. Bayesian hierarchical model. Suppose that we measure X and Y , but they both have Gaussian measurement
errors, σx and σy, respectively. We want to infer the slope m given X and Y .

(a) Build a Bayesian hierarchical model (BHM) for the problem, with two latent variables x and y for the
“true” values of the measured quantities.

(b) Assuming a uniform prior on m and x, write down an expression for the (unnormalised) marginal
posterior on m, p(m|X,Y ).

(c) Write the joint posterior on x and m, p(x,m|X,Y ). What can be said about the conditionals
p(x|X,Y,m) and p(m|X,Y, x)? Exploit this property to build an appropriate sampler for the joint
distribution. Write a piece of code to check your results.

3. Posterior predictive test. Let us now use the BHM for making predictions of new data.

(a) Write down the formal form for the posterior predictive distribution for a new data point (X̃, Ỹ ),
p(X̃, Ỹ |X,Y ). Using the previous result, how can we draw samples from p(X̃, Ỹ |X,Y )?

(b) We now want to acquire new data at another location x̃. What is the posterior predictive distribution
p(X̃, Ỹ |x̃, X, Y )? Evaluate it on a grid and plot its marginals for a few values of x̃.

IV. INFORMATION AND ENTROPY

We wish to compare, on a logarithmic scale (in “thermodynamic units”) the amount of information (or equiva-
lently, the logarithm of the number of microstates) in various systems. (In what follows information is measured
in units of entropy, i.e. using the Boltzmann relation

S = kB lnΩ, (3)

so that one “bit” corresponds to an entropy of kB ln 2.)
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1. Assuming that the macrostate describing 1 mg of water at ordinary temperature corresponds to a certain
number of equally probable quantum microstates, evaluate this number. The entropy of water is given
as 70 J ·mol−1 ·K−1, the molar mass of water MH2O ≈ 18 g · mol−1, and the Boltzmann constant kB =
1.38× 10−23 J ·K−1.

2. Estimate the order of magnitude of the information content in the Bibliothèque Nationale de France in
thermodynamic units. Assume the library contains approximately 7× 106 volumes, with an average of 500
pages per volume and 1000 characters per page. Compare this with the entropy of 1 mg of water.

3. Compare the above with the order of magnitude of genetic information per individual. Human DNA contains
3× 109 base pairs, with 4 possible choices for each base pair.

4. The brain contains 1010 neurons, each forming synapses with 1000 neighboring neurons. A synapse, the
connection between two neurons, can be in one of two states: inhibitory or excitatory. Determine the
amount of information required to describe the state of all synapses in the brain. Now suppose that for each
neuron, we must choose the 1000 neurons to which it is connected. What additional amount of information
would this require?

5. Plot the quantities of information obtained in the previous questions on a logarithmic scale. Comment on
your findings. What do you think about the possibility that the entire wiring of the brain is contained
within the genetic material?
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