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BAYESIAN MODEL

%3 COMPARISON



Three levels of inference

| have selected a model Actually, there are

M and a prior p(6|M)  several possible models M, M ...

.

PARAMETER INFERENCE MODEL COMPARISON

What are the values of # preferred
by the data, assuming that the
model M is true?

What is the relative plausibility of
the different models M, M

given the data?

D8, Mp(EIM)
PO M) =)

None of the models is
clearly the best

MODEL AVERAGING

What is the inference on the

parameters accounting for model
uncertainty?

plOID) = 3 p(61d MOp(Md)
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I Bayesian inference

* Define:
data d

model 6
model parameters M

«  Specify likelihood and prior

* Infer posterior and evidence

INPUTS OUTPUTS
p(d|0, M) x p(0|M) = p(0|d, M) x p(d|M)



I Model selection

- Now apply Bayes’ theorem to models M rather than parameters:
p(d|M;)p(M;)
p(d)

*  The “meta-evidence” (normalisation) can be written as a sum over models:

p(d) = > pldIM;)p(M;)

p(M;|d) =

* The evidence for each model can be written as an integral:

p(dIM;) = / p(d]6, M,)p(61M;) do

* So we can compare the posterior probabilities for two models:

p(Myld)  p(d|M;y) p(My) p(d| M)

Posterior odds: = Bayes factor: B =

p(Msld)  p(d|Myz) p(My) p(d|Msy)

Prior odds:

=

=

<

—

<

[\)

S—



I Evidence for a toy model

p(dM) / (d|0, M)p(6|M) b

= p(d|f, M)p(9] M) 60

(é) 59
/ ~

Goodness-of-fit Qccam s factor
factor (rewards (disfavours large

accurate predictions) priors)

D= o e e e e



Evidence for polynomial fits

True Model (order 3 polynomial)
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I An automatic Occam’s razor

The Bayes’ factor balances the quality of fit
versus the model complexity.

It rewards highly predictive models (if they
are accurate), penalising “wasted”
parameter space.

pldlv) = [ L@p(61M) a0

~

~ —L(é)

/AQ

Occam’s factor

Q== e = — -

With four parameters | can fit an elephant, and
with five | can make him wiggle his trunk.

10



The evidence as predictive probability

Observed data

p(d|M)

(case 1)

Observed data
(case 2)

Evidence for more
complex model

M

* The evidence can be understood as the
predictive probability of the data d, under
the model M :

In case 1: the simpler model M is preferred, as it
made a sharp prediction that has been verified

In case 2: the more complex model M is
preferred, as its additional complexity is required by
the data

11



I Decisiveness and the Bayes factor

P(d|M1)
p(d|M2)

e Bayes factor: By =

«  We can always write:  p(d|My) = bp(d| M)

b 1
* Then: 812 = — and 821 - 7
/ 1 ’ N
Grows linearly Asymptotes to zero

* Therefore, we take the logarithm to define a measure of decisiveness:

111812 —Inb
11’1821 — —1Inb

}—> Now 515 and B35 are treated on an equal footing

12



Jeffreys’ scale: scale for the strength of evidence

Decisiveness can be represented graphically:

Model 2 favoured ~ Model 1 favoured

In Blg

A (slightly modified) Jeffreys’ scale to measure the strength of evidence:

|In B4, | Relative odds Favoured models’ probability = Interpretation

13



I A particular case: nested models

0—0
A frequent case is when M is a complex  Define \ = 0
model, with prior p(6| M), which reduces . 00 .
. . * Then for “informative” data:
to a simpler model M, for a certain value A§ )2
of the parameter, e.g. 0 = 0. InBy; =In — — —
M and M are called nested models. _59 2

Example in cosmology:

s the extra complexity of M| warranted by

the data?

TS e e ke stk

D
o

14


https://arxiv.org/abs/0803.4089

A particular case: nested models

AG
InBy; =1
n So1 n 50

Wasted parameter space
(favours simpler model)

/\2

2 \
Mismatch between prediction

and observation (favours more
- complex model)

0 — 0,

>
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D

<3
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o
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Trotta, 0803.4089
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https://arxiv.org/abs/0803.4089

Model comparison example: looking for a sighal

Problem considered: we want to know if there is evidence for a constant signal in a set of noisy
data.

We perform model comparison between two models:
Ma: the data mean has a known value = 4 (e.g. there is no signal, " = 0)
M : the data mean has unknown value it # 1" (e.g. there is a signal, u* # 0)

Assume that data points are drawn from a Gaussian with known variance and unknown mean.
What is the likelihood and summary statistics for the problem?

Assume that the prior on the unknown mean is Gaussian. What is the analytic form for the
evidence?

How does the evidence depend on the hyperparameters of the problem?

16



I Model comparison example: looking for a sighal

« Likelihood: for one data point: « Prior: a Gaussian will be a conjugate prior.

di ™G, 7Y with 7= 1/0? We assume:
G, po )

« This prior is characterised by two
p({d:} |, 7) Hp(d |12, 7) hyperparameters (1to, Po)

* For the full data se’r

exp | L (N7)(d - m?]
= p(d| ) o
with d ~ G(u, (N7)™) d= ~ Zdi

* The empirical mean d acts as a sufficient
summary statistics of the full data. For this
problem we can just work with d .

17



Model comparison example: looking for a sighal

« Evidence: we integrate the product of the « Bayes factor (including the constants):
likelihood and the prior.

. . . NT + po exp [—3(N7)(d — p*)?]
° F M Th G ’ h B - \ {
or 1 WITh a Gaussian prior on i, we nave 01 \/p—oexp [—%[(NT)_I + pgl]_l(d _ MO)Q}

p(d|My) = /p(cﬂ,u)p(um(),po) du « The Bayes factor depends on the
hyperparameters (11, Po) and . Different

X fexp [_%(NT)(J_ u)zl exp [_ %po(u — ﬂ0)2] dp priors will change the conclusion of model

comparison.
1 —1 —11-1/7 2 eq.f * = ' '
_ _ .g. for u* = pyp, the choice of po will set the
- [ 2 ((NT) 40 ] (d = o) _ thresholds of decisiveness.
. : . pldMm) p(d|M) _
(by Ccimple’rlng the square and integrating) 0 . , = 1o ,
x G(po, (NT)™" +po ) | | |
«  For My, the prior is a Dirac delta Evidence MO Evidence /. Mo
distribution, p(u) = 0p (M — M*) giving an for model ! ! for model !
evidence: M RLIARSNY My e nits
;Ulo ,ul J :I

p(dlMo) oc G(p*, (NT)™)

Ho=H"
18
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Model comparison in practice

Full integration of the evidence (“thermodynamic integration”):

Nested sampling
MCEvidence

Laplace approximation

Special cases:
e.g. nested models = Savage-Dickey density ratio

Approximate methods:
e.g. information criteria: AIC, BIC, DIC

20



Full thermodynamic integration
Nested sampling
Original idea proposed by John Skilling in

2004: convert a D-dimensional integral into

a 1D integral that can be done easily.

Accumulate evidence

\/_’\‘\Z:E, LAX

6,

As a by-product, it also produces posterior
samples: parameter inference and model
evidence are obtained simultaneously

(= alternative to MCMC).

Several implementations and
enhancements: MultiNest, PolyChord.

Skilling (2004); Mukherijee et al., astro-ph/0508461; Feroz et al.,

0809.3437; Graff et al., 1110.2997; Handley ef al., 1502.01856

MCEvidence

After MCMC sampling, using kth nearest-
neighbour distances in parameter space and
the Mahalanobis distance metric.

Implementation: MCEvidence.

Application to Planck (2015) MCMC chains:
no evidence for extensions to the standard
cosmological model

| TT,TE,EE: « | TT,TE,EE + lensing: + | TT + JLA: % |

[0 T T P I -flat- ACDM - ooreereerrennnneenn - 1

4 10-1

4 10-2

odds ratio

'(Neﬁ’zmv) -3
o . eff sterile 110
m\/

8 I L

110
-10 |

eff,sterile
+(Negr.my s 70.05)

Heavens et al., 1704.03472; Heavens et al., 1704.03467

21


https://github.com/rjw57/MultiNest
https://github.com/PolyChord/PolyChordLite
https://github.com/yabebalFantaye/MCEvidence
https://doi.org/10.1063/1.1835238
https://arxiv.org/abs/astro-ph/0508461
https://arxiv.org/abs/0809.3437
https://arxiv.org/abs/0809.3437
https://arxiv.org/abs/1110.2997
https://arxiv.org/abs/1502.01856
https://arxiv.org/abs/1704.03472
https://arxiv.org/abs/1704.03467

I Laplace approximation

« Fit a multivariate Gaussian to the likelihood close to its peak:

1

p(d|0, M) = L. exp [2(9 — O nax ) TL(0 — Qmax)]

* Assume the prior is Gaussian with zero mean and precision matrix P:

p(OIM) = |27P 1|2 exp {;WPQ]

* Then the evidence is:

F —1/2
p(dI M) = Las.

1

Occam’s factor

Best-fit factor

max

-

F=L+P

1 ~ = :
“;)T/Q exp |:—§(9T Lgmax — QTFQ)] with =

\

g = F_lLQmaX

Suppresses the likelihood of models for which
parameter values that maximise the likelihood 0,
differ from the posterior expectation value 6

22



I Savage-Dickey density ratio (SDDR)

This approach is applicable for nested
models and provides an analytical solution
for the Bayes factor.

Assumptions:

Nested models: M with parameters (6, 1))
reduces to M for § = 6,

Separable prior:

p(0, Y| My) = p(0|M1)p(v| M)
Result (SDDR) 5o p(90|d, Ml)
T (el M)

Interpretation: The Bayes factor is the ratio
of the normalised marginal posterior in
M over its prior, evaluated at the value of

the parameter for which M reduces to M.

P(9|M1)
; Marginal
: posterior
I under
: M,
I
I
I
I
I
I
[
I
I
I
4/
] =
6o 0

* The SDDR is involves the (low-dimensional)
posterior and prior of the extra parameter.

* Itis calculable e.g. from MCMC samples
drawn from the posterior under M.

23


https://doi.org/10.1214/aoms/1177693507
https://doi.org/10.1080/01621459.1995.10476554

I Derivation of the SDDR

«  We compute the evidence of model M in terms of M using the rules of probability theory:

pdlMo) = [ pldly, 0o, Mop(yI M) dy
. p(¢790|daM1)P(d|M1) ,
_/ . Qp?goﬁv)\/l(lgﬂj\/l )p(l/)|Mo) dy  (Bayes’ theorem)
pPly, vola, /Vi1)p 1
— M) d separable prior
/(d }\9}[93|M1)p(¢|M0) p(iﬂ ) v (hyr?o’rh:slis)p
b 1
" A [ vt 0ol M) v
— ;9((90 Mll)) /p(¢|90,d)]\/ll)p(90|d,./\/l1)d@b (product rule)
B p(dM1) oL
=0 Ml)g(pééodd;\i\l/l;)fp(wwo,d,/\/ll)dw JEr(;ourrr:;Te;I)lsahon
. pP\bo|a, Vi
= MM o)
_ _ pldMo) — p(bold, M)
Therefore: By = pdMy) ~ plOo M)

24


https://doi.org/10.1214/aoms/1177693507
https://doi.org/10.1080/01621459.1995.10476554

Comments on the Savage-Dickey density ratio

For nested models and separable priors, the values of the common parameters 1) do not matter
for the value of the Bayes factor.

Therefore, no need to spend time/resources to average the likelihoods over the common parameters!

Prior sensitivity analysis is simplified: only the prior on the additional parameter needs to be considered.

The role of the prior on the additional parameter is clarified: the prior onis 8 :
a Dirac delfa distribution in M : p(6|Mo) = dp (0 — 6y)
a wider distribution in My: p(#|M;) (dilution of the predictive power of M )

The wider the prior, the stronger Occam’s razor effect.

The SDDR does not assume Gaussianity, but it does require sufficiently detailed sampling of the
marginal posterior under M to evaluate reliably its value at 0 = 0.

Marginal Marginal
posterior Bad posterior
under under
M M,




Information criteria

In some cases, we need a simpler way to
roughly rank models. Several information
criteria exist to Bayesian model
comparison.

Parameters:
N : number of model parameters

k : number of data points
—21n Ly : best-fit y?

Akaike information criterion:
AIC= —2In L, + 2k
Bayesian information criterion:

BIC=-2InL, ..+ klnN
Deviance information criterion:

DIC = —2Dx;. + 2C,

Bayesian complexity

estimated KL divergence

The best model is the one which minimises
the AIC/BIC/DIC.

The AIC and BIC penalise models differently
as a function of the number of data points
(stronger penalty with the BIC for NV > 7).

The BIC approximates the full Bayesian

evidence with a Gaussian prior equivalent to
1/N-th of the data in the large N limit.

The Bayesian evidence does not penalise
models with parameters that are
unconstrained by the data. Unmeasured
parameters (posterior = prior) do not
contribute fo the evidence integral.

The DIC considers whether parameters are
measured or not (via the Bayesian complexity).
When possible, calculation of the Bayesian

evidence is always preferrable.

Note: none of these information criteria are Bayesian
(not even the BIC). In Bayesian statistics, finding that
the data are extremely implausible within a model
does not invalidate the model in the absence of an
explicit alternative model with better performance.

26


https://arxiv.org/abs/0803.4089




Model averaging

Imagine that two or more models explain the same effect (predict the same parameters). None
is “better” than the others, as probed by the Bayesian evidence.

Examples:  Typical scenario:

Weak .Iensmg: different infrinsic alignment models: Ml M2
Linear Alignment (LA)
Tidal Alignment Tidal Torque (TATT)
Empirical models based on simulations...

Nuisance
parameters

Nuisance

parameters
Structure formation:

Press-Schechter mass function
Sheth-Tormen mass function
Tinker et al. mass function
Jenkins et al. mass function...

Physical
_ parameters
Model averaging:

includes model uncertainty into final parameter uncertainty

can be thought of as “third-level” Bayesian inference 9|d Zp (9|d M. ) ( |d)
(

28



Model averaging: example

Application to dark energy:

Model III

0.2 0.25 0.3 068 07 072 -1 -0.5
Q h W
m
Model IV
0.2 0.3 0.68 0.7 0.72
h
-2 -1 -1 0 1
W

Liddle et al., astro-ph/0610126

0.2 068 0.7 072 -2
Q h
Model V
0.2 0.3 068 0.7 0.72
h
-0.9 -0.7 -04 0 04 08

W
a

BMA: all 5 models

0.2 0.3 0.68 0.7 0.72
Q h
m
-1.2 -1 -0.8 -1 0 1
W w
0 a

29


https://arxiv.org/abs/astro-ph/0610126

Bayesian model comparison: summary

Bayesian model comparison extends Bayesian inference to the space of models, using evidence
ratios.

The Bayesian evidence balances the goodness of fit against the model complexity (number of
parameters, prior volume).

In practice,

Various approximations exist (SDDR for nested models, Laplace approximation, information criteria).
Algorithms exist that give parameter constraints and evidences.

Setting priors for model comparison is important (often easier with nested models). Model
comparison is prior-dependent.

30



BAYESIAN DECISION THEORY

% AND EXPERIMENTAL DESIGN






I Bayesian decision theory

Bayesian decision theory is a framework for optimal decision-making, given a set of possible
actions and a state of uncertain knowledge, represented by a pdf p(#|1) (usually the posterior
from a Bayesian inference prior to decision-making).

Notations:
{9} = set of parameters (observed variables)

{a} = set of possible actions

Expected utility hypothesis: Given a set of gain functions G(a|6), the optimal decision rule
consists of performing the action that maximises the expected utility U (a|l), defined by

U(alT) =<Glalf) == | Glalo)p(6l1) s

Thus, one should perform the action a® = argmax, U(al|l).

33



Example: Bayesian alerts Exercise: Bayesian alerts

We are looking for an event E. We have access to p(E|I) andp(E|I) =1 — p(E|I).

There are two possible actions:
a1 = raise the alert

a2 = do nothing

correct detection false positive
é (a “hit”) (a “false alarm”)
The utility functions are:  U(ay|I) = G(a,|E)p(E|I) + G(a, 5 p(E|I)]

E)[1-
Ulas|l) = G(a2|E)f(E|I )+ G(a ; [ E|] }

false negative \COI’I’GCT rejection
(a “miss”)
A typical choice of gain functions:  G(q,|E) = GQC G(a,|E) = —O\
_ the expected gain s the cost of raising
G(a2|E) =0 for a detection G(a”2|E) =0 an alert
Therefore, we have U(ay|I) = p(E|I)(G — C) + [1 — p(E|I)] (—=C)
Ulas|I) = 0
: : . G
|:> One should raise the alert if and only if p(E|I) > -

34



Classification of cosmic web-types
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https://arxiv.org/abs/1502.02690

I A decision rule for structure classification

«  Space of “input features™:
{Ty = void, T; = sheet, Ty = filament, T3 = cluster}
« Space of “actions”:

{ag = “decide void”, a; = “decide sheet”, a; = “decide filament”,
az = “decide cluster”, a_; = “do not decide”}

* ltis thus a problem of Bayesian decision theory: one should take the action that maximises the
utility

3
Ula;(Tk)|d) = ZG(alei)P(Ti(fk)ld)

*  How to write down the gain functions?

36


https://arxiv.org/abs/1503.00730

Gambling with the Universe

*  One proposal:

(1
BT, a if 7€ [0,3] and i =7 “Winning”
G(a;|T:) = « —a if j€[0,3] andi£j Losing’
L 0 if j =—1. “Noft playing”

«  Without data, the expected utility is

U(a,j) =1—q« if j = —1 “Playingthe game”
U(a;_l) =0 “Not playing the game”

« With o = 1, if’s a fair game = always play

I:> - ” of the LSS

* Values a > 1 represent an aversion for risk
|:> increasingly “ " of the LSS

FL, Jasche & Wandelt, 1503.00730

7.08 (T-web, redshift zero)

M voids

H sheets

O filaments
M clusters

37
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Playing the game...

FL, Jasche & Wandelt, 1503.00730

900 g

0 100 200 300 400 500

- voids filaments

- sheets clusters

- undecided

38


https://arxiv.org/abs/1503.00730




Experiment utility and optimisation

Bayesian experimental design is an optimisation problem where we seek to optimise the
expected utility of a future experiment.

«  The optimisation problem is fully specified by the joint utility function U (€, d, 6|0) with
& : experimental design (parameter characterising the design of the new experiment)

d : new data to be acquired
0 : parameters of the problem, to be measured
o0 : result of the current experiment (all probabilities are conditional on 0 here)

*  We can evaluate the expec’red u’rili’ry:

U 5 d 9| )> p(d,0|&,0)
/ (&,d, 0l0)p(d, 0]¢, 0) dd do

0)p(d|@, &’,/}lp(é)% o)ldd do

:/ U(f,d,@/ £

predictive distribution of posterior of current
new experiment experiment

40



Experiment utility and optimisation

Particular cases:
If the utility does not explicitly depend on the true values of the parameters to be measured (only on the quality of

the future data): U(f, d, 9|o) — U(f, d|O)
en U(€lo) = [ V(€ dioyp(dlé, A da

__—

predictive distribution of
new experiment

If the future data explicitly contribute to the “scientific return”e = (&, d) (not only the experimental design), then
one should not marginalise over d : U(f) d, 9|O) — U(e’ 9|o)

Then U(elo) :/U(e,9|0)p((9|0) d6

posterior of current
experiment

More on Bayesian experimental design after we have studied information-theoretic measures of
entropy and information.

4]



Bayesian experimental design: example Exercise: Bayesian linear model —

Bayesian experimental design

* Model: y = max. We want to measure the slope m of this relationship.
*  We have measured two points yg and y; with error o at two locations g and ;.

«  We now have the choice between two (equally expensive) experiments:

Instrument - : As accurate as foday’s
instrument, will measure y; at a much larger
value x; (so as to increase the lever arm in the
measurement of the slope)

Instrument ~ : Much more accurate
instrument, but built so as to have a “sweet
spot” at a certain value of y, called y,, and
much less accurate elsewhere.

1.0

Experiment (e)

i
0.8

0.6 1

0.4 1

0.2 1

0.0

0.2

0.4 0.6

0.8

¢ 1.0

1.0

Experiment (a)

0.8
0.6 1
0.4 1

0.2 1

0.0

0.2

0.4 0.6

z: 0.8

1.0
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Bayesian experimental design: example

*  Which instrument should we go for? The answer should probably depend on how good our
current knowledge of m is. Is the current uncertainty on m small enough to target accurately
enough r = x,so that we get fo the sweet spot Yy, = mx,?

*  We can use for the utility of the inverse variance of the future posterior on m and assume for the
noise levels of instrument a the toy model: [( )2
Y — Yx

2
202

_ 2
T, = T, exp

a

] where A is the width of the sweet spot.

1.0

i
0.8

0.6 1

0.4 1

0.2 1

0.0

Experiment (e)

0.2 0.4 0.6

¢ 1.0

1.0

0.8

0.6 1
Ui

=

0.4 1

0.2 1

0.0

0.0

Experiment (a)

0.2 0.4 0.6

1.0
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Bayesian experimental design: example

If we take a prior for m centred on zero with unit variance, the posterior of the current
experiment, p(m|o), is Gaussian with:

ToYo + T11 , , 22 4 22
inverse variance: [ =1 4 ~Y T

o2 + 22 + x? 52

mean:. m

After adding an independent data point at x¢ with variance Tz(ﬂjf) , the posterior of the next
experiment is Gaussian with inverse variance: 72

F+ 1 which we choose as utility function.

72 ()
For experiment -, the utility does not depend on the parameter, i.e.

Ulelo) = /U(e,m\o)p(mb) dm  and the noise is constant, i.e. T.(xf) = T,

2
Therefore, Uf(elo) = F + —g . Maximising the utility is equivalent to maximising
T

e

(i.e. using the maximum lever arm possible).
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I Bayesian experimental design: example

* For experiment , we use the noise model

(y — y*)z (mas — ?J*)Q
rite) = rtenp [ UL oy |0 T

where A is the width of the sweet spot, using y = ma;.

. T
The utilityis U(a,m|o) = F + — XD |~ Az

*

i [_ 1 (mae — y.)?

|

1 (mxs — y,)*

| oo am

2
The expected utility is  U(alo) = / {F e :2:‘_; exp [2
T*
1 1 _
with p(m|o) o exp {—ﬁF(m — mz)] = exp [—5 (m S

* Theresultis

2 - 2
B o 1 (maxe — yy) A
U(a|0)—F+exp{ ) AP A2 ]\/ T A

m)2] 1
and Y = —
2 VF

where A, = Y is the uncertainty at ;.
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Bayesian experimental design: example

In the case where A >> A, maximising
U(a|o) is equivalent to maximising

TF _ T {_1 (mas — y*)2]

— e
T2(xg) T2 <P 2 A2

The solution is

oy L4+ /1 4+ 8A2/y?
M )

Xt

This is different from minimising the noise
7, (x¢) which would have given

3/,2
g;f:%.TheTerm L+ /148A%/y, > 1
m

increases the lever arm while staying in the “sweet
spot” of experiment

* Inthe case where A < A, , maximising
U(alo) is equivalent to maximising

2 2
[0 ]

72 2 X2 Y
* The solution is
oy L+ /1 — 482 /m?
- m 2532 /2

Tt is real if M > 2, i.e. the slope is measured from
current data with an accuracy better than 23..

If this is not the case, U (a|o) is a monotonically
increasing function of x¢, so it is maximised by
maximising T¢, even if it means carrying out a very
poor measurement (7, — +0C as Ty — +0Q).

Tt
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Bayesian experimental design: example

A A, A< A,
1.0 ! 1.0 !
0.8 » 0.8
j
f”
0.6 0.6 -
Y Ya
= _ =
0.4 T 0.4 et
- -
f” ’,’
0.2+ ',’ 0.2 P
”J ”I
0.0 0.0
x T
1200 1
Ulelo) Ulelo)
1000 Ulalo) 100 1 Ulalo)
£ 800+ £ 80
‘3 600 1 {Lj 60
E 100 E
40
200
20
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Ty

Ty

Interpretation: Designating an experiment that exploits a “sweet spot” is only feasible if our current uncertainty
on the parameter to be measured is small enough compared to the “sweet spot” window of opportunity.
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Bayesian hierarchy from latent variables Exercise: Bayesian linear model —

Bayesian hierarchical model

Model: y = mx

We measure X, Y, but they both have 2.5 v
measurement errors. What is the posterior S
for the slope m ? 2.0 o
Applying the first rule (“write down what you /.-:_’:”
want to know”): we want to know p(m|X,Y) 2 s
There are two unknown (“latent”) variables in ol P
the problem: the true values x, y e
Full joint pdf of the problem: 0.5 1 ‘ﬁ«:ﬁ”

p(mPr?y?X?Y) 0.0 /'*

. 0.00 025 050 075 1.00 125 150 1.75 2.00
Joint pdf of the target and observed N

variables:

p(m, X,Y) = / p(m, 2y, X, V) da dy



I Building the statistical model

*  Apply Bayes’ theorem:

«  We construct a forward (generative) model
p(m|X,Y) o< p(X, Y |m)p(m)

of the data graphically:
* Introduce the latent variables and marginalise:

Cpm) | [P Prers | poes i) ] X, Vi glmiptm) s dy

@ e i de%%tnd *  Expand first probability with the product rule:

075y X Y)Y oy e, ylm)p(m) da dy

[p(y|5ca m)] _ « Expand second probability with the product rule:

O @ @ erors | Doss PN [ XY Loyt m)ptelm)ptm) d dy

— der;gnd p-XS}i/rr;pgfi%c;o:nzi(’r)i?nﬁljgd?)oendencies:
PX Y[y, 00,0,) N papm) =pla)
Data *  Apply physical relation: p(y|z,m) = dp(y — mx)

- * Integrate to get the final result:

p(mIX,Y) [ p(X, Y |e,ma)p(x)p(m) da
51



Inferring the slope "0
0.05 1
pmlX, ) o [ (X, Y | )pla)pom) d oo
= 0.031
* |If the error distribution is Gaussian with zero =l
mean, and if we take uniform priors on x Vol
and m:
400 _l(X—o:)z _l(Yfmac)Q 0.00 | | | | | | |
p(m|X,Y) X / e 272 o 2 o7 dr 100 125 150 1.?';5 200 225 250
- X=10Y=15
«  Completing the square and integrating gives o, =0.10,0, = 0.12
the marginal posterior for m : )5
0u0 1(Y —mX)?
m|X.,Y) x Y e -
plm| X, Y) Vo2 +mias : [ 2 U§—|—m20'§] 201
1.5
| 1.0
0.5
0.0

000 025 050 075 1.00 125 150 175 2.00



Inferring the full model and sampling

The joint posterior for (x, m) is:
plz, m|X,Y) o p(X, Y|z, ma)p(x)p(m)

1 (X—x)2 _l(Y_—'ngm_)2
1 —
xe 2 % ¢ v

o At fixed x:
12%(m — X)?
p(m|X7 Y,ZU) X exp _5 o2 =
y
. Y o?
l.e. p(m|X, Y) ZL‘) — g <_7 _g>
T x

At fixed m (combining the exponents and
completing the square):

o* X +mo?Y o202
1 X.Y.m) = i i y 2
plelX,Y,m) =G ( o2 +m20? o2+ m%g)

We can therefore use Gibbs sampling to
draw samples from the joint posterior:
m -~ p(m|X,Y, r)
r - p(e] X, Y, m)

2.2

2.0 4

1.8 1

m

1.4 1

1.2 1

1.0

2.2

2.0 1

1.8 4

£ 1.6 1

1.4 4

1:2:

1.0

1.6 1

0.6

0.8 1.0 1.2

14

0.6

0.8 1.0 1.2

1.4

X=10,Y =15
o, = 0.10,0, = 0.12

o3



Bayesian hierarchical models and generalised linear regression

At the heart of the method lies the
fundamental problem of (generalised) linear
regression, in the presence of measurement
errors on both the dependent and the
independent variable and intrinsic scatter in
the relationship.

This is a general problem in any field dealing
with objects with an infrinsic variability.

The key parameter is the noise to population

. : 00y
variance ratio, r =
R,

For small 7, the Bayesian marginal posterior onm is
identical to the frequentist profile likelihood.

For large 7, the Bayesian marginal posterior is
broader but less biased than the profile likelihood.

Model to be fitted:

-

\\

-

y=mx+b
Statistical model:
P lati
vi ~ p(zlR,) = Gz, R,)  POPURMON
Intrinsi
yilz; ~ G(mz; + b, Ry) v;]rire;g?lli(’r:y
p
Xia 1/z|xz7 Yi ~~ g([ﬂj‘“ yz], C) MeaSel.;:s::nenT

N

0.2

usually C' = (Ox 72

0

Y

)

o4
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https://arxiv.org/abs/0705.2774
https://arxiv.org/abs/1102.3237




I Bayesian hierarchical models for adapting the prior

« Simple Bayesian inference: rior

b
p(0ld) o< p(d|6)p(0)

* Inference with an adaptive prior depending on a latent variable:
prior }yperprior

p(61d) o p(dIB)FOImpn)

* ... or a full hierarchy of hyperpriors.
Examples:

Cosmic microwave background:

p(102},1C}, s|d) o< p(ds) p(s[1Ce}) p(1Ce [{82}) p({£2})

Large-scale structure:

p(182}, @, gld) o< pld]g) p(g|) p(@11§2}) p(1£2})

o6



Many sources of variability

You pick a lightbulb, and
measure its brightness. What
is i1?

There are many reasons why
the value might vary:

It's picked from a box of bulbs
of different brightnesses

The manufacturing process is
Imprecise

Measurement error

Any or all of these may apply
(and you may not know
which).

- Pror | - Pror |

Population Parameters Nuisance
parameters of interest parameters

Intrinsic variabW

Latent True values of the
variables observables

Noise, selection effects l
v

[ Calibration data }

Data [ Observed values ]

o/



Bayesian hierarchical models for complex problems

How can we make sure all the errors are
propagated correctly to the posterior?

We split the inference problem into steps,

where the full model is made up of
. The aim is to build a

complete model of the data. It is a principled
way to include systematic errors, selection

effects, etc. (everything, really).

The Bayesian Hierarchical Model (BHM) links

the sub-models together, correctly
in each sub-
model from one level to the next.

It also exposes what you need to know or

assume. At each step you will (ideally) know

the

All of the steps give rise to *
parameters in sub-models, usually not of
Interest.

A particular sort of “nuisance parameter”

They still need to be accounted for (and
marginalised over)

e.g., contribution of systematic error to a
measurement

e.g., galactic dust flux in a noisy CMB pixel

These might very well be “signal” for a
different purpose.

Therefore, BHMs may have

When you are using

2"
.

for inference,

is “frivial”: just ignore those

variables in the output.

Realistically, of course, there is usually some

information there!
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BHM example: supernova cosmology (BAHAMAS)

[

o

0, @ GPOEOOED
N

H

-,

Shariff et al., 1510.05954

Csysr.

known/observed

quantities

O latent variable

function of data

and parameters

Parameter

Notation and Prior Distribution

Cosmological parameters

Matter density parameter
Cosmological constant density parameter
Dark energy EOS

Hubble parameter

Qun ~ UNIFORM(0, 2)
Qa ~ UNIFORM(0, 2)
w ~ UNIFORM(—2,0)

Hy/km/s/Mpec = 67.3

Covariates

Coefficient of stretch covariate

Coefficient of color covariate

Coefficient of interaction of color correction and z
Jump in coefficient of color covariate

Redshift of jump in color covariate

Coefficient of host galaxy mass covariate

a ~ UNIFORM(0, 1)

B (or By) ~ UNIFORM(0,4)
By ~ UNIFORM(—4,4)

Ap ~ UNIFORM(—1.5,1.5)
2z ~ UNIFORM(0.2,1)

v ~ UNIFORM(—4,4)

Population-level distributions

Mean of absolute magnitude

Residual scatter after corrections

Mean of absolute magnitude, low galaxy mass
SD of absolute magnitude, low galaxy mass
Mean of absolute magnitude, high galaxy mass
SD of absolute magnitude, high galaxy mass
Mean of stretch

SD of stretch

Mean of color

SD of color

Mean of host galaxy mass

SD of host galaxy mass

M¢ ~ N (-19.3,22)
o2, ~ INvGAMMA(0.003, 0.003)

res

Me ~ N'(-19.3,22)

o' * ~ INVGAMMA(0.003, 0.003)

re
M~ N(-19.3,22)

o ? A INVGAMMA(0.003, 0.003)
T1, ~ N(0,10%)

R;, ~ LOGUNIFORM(—5, 2)

e ~ N(0,1%)

R. ~ LOGUNIFORM(—5, 2)

My, ~ N(10,100%)

Rz ~ LOGUNIFORM(—5, 2)
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BHM example: weak lensing

PSF, instrumental noise cosmology galaxy
characteristics

P({x}) P(0) P{&})

Can include:

parameters
characterizing @ @ @ Mask
A

distributions Intrinsic alignments

Baryon feedback

[P({HH{X})J @SI@ (P(za {g}l{é})J Shape measurement

Photometric redshifts
physical
quantities

(P(al{TT}))  (P(dls,z{g}.{11})] (P(zpl2)

data
products



https://arxiv.org/abs/1505.07840

BHM example: large-scale structure inference from peculiar velocity tracers

Initial density field

Final density field

Velocity field

ot (6")

Y

P

v(6h)

!

7

Viy)

Peculiar velocity tracers

ol


https://arxiv.org/abs/2204.00023

Back to Wiener filtering

Hsld = Hs + S(S_'_ N)_l(d_ Nd)
Ca=S—S(S+N)S

 As a BHM:

9.70503e-05 mK 0.000104474 9.65171e-05 mK 0.000105531

Wiener filtered data (posterior mean) One simulated signal

6.37243e-05 mK 7.70233e-05

6.37863e-05 mK 7.77257e-05

‘62



Back to Wiener filtering

Hsld = Hs + S(S_'_ N)_l(d_ Md)

x 10710

x 10-‘3

x 10710

X 10—}3

Problem: computing/representing (S + N) ! is difficult

1 because S is sparse in harmonic/ Fourier space and NV
Csa=85—-S(S+N) 'S ) : : .
s sparse in configuration/real space.
e One row of \/g
ltl)J ' IE)1 1(;: 163 Galactic
. Mask |

-3.5338e-09 mK 5.50662e-07

Galactic



Messenger field and multivariate Wiener filtering

sja = S(S + N)*d (assuming jts = jtg = 0) o
Cysja =S — S(S + N) 'S

*  Messenger field algorithm:
Introduce an auxiliary Gaussian random field ¢ with covariance matrix T' = 71.

T (isotropic noise covariance maitrix) is diagonal in any basis (harmonic/Fourier
and configuration/real).

Introduce N = N — T (residual noise covariance matrix).
«  Sampling:

Goal: obtain samples of p(s, t|d) via Gibbs sampling. We need the
conditionals p(s|d, t) and p(t|s, d).

p(s|d, t) = p(s|t) is Gaussian with

As a BHM:

mean: s = (ST +T )Tt (assuming ps = e = 0)

covariance: Cy; = (S~ + 771!
p(t|s,d) o< p(t|s)p(d|t) is Gaussian with
mean: fiyjsa = (I~ + N T s+ (T 4+ N7 T'N-'d
covariance: Cy,q= (T + N1~}

o4


https://arxiv.org/abs/1210.4931
https://arxiv.org/abs/1402.1763
https://arxiv.org/abs/1801.05358

Bayesian hierarchical models: summary

BHMSs are a way to build a statistical model of data by splitting the problem into steps.
Decomposing into steps exposes what is needed — typically many

For complex experiments, this may be the only viable way to build the statistical model of the
data.

The decomposition is usually very natural and logical.

The model allows the proper from one layer to the next, including a
proper treatment of systematics.

One can often use efficient algorithms to sample from the posterior — precisely what
one wants for a Bayesian statistical analysis.
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Bayesian networks

Bayesian networks are probabilistic graphical models consisting of:

A (DAG)

At each node,
Difference with Bayesian hierarchical models (for some authors): the graph can have
“diamonds”

Example: ?(C) 2(C)
0.5 0.5
Cosmology
P(C)
S T(Mclg =) SP(M(])C; =9 DM clusters DE clusters ¢ T(E|OC;3: ‘) T(E|OC'4: ‘)
' ' P(M|C) P(E|C) ' '
1 0.7 0.3 1 0.1 0.9

\ Galaxies
P(G|M, E)

P(GIM =m,E=¢) P(GM=m,E=c¢)

m e
0 O 0.10 0.90
1 0 0.95 0.05
0 1 0.95 0.05
1 1 0.99 0.01



I Bayesian networks: example

Full joint probability P(C)  P(C)
0.5 0.5
Cosmology
P(C)
c PM|C=c) PM|C=c) DM clusters DE clusters PEC=c) PEIC=c)
0 0.2 0.8 P(M|C) P(E|C) 0 0.6 0.4
1 0.7 0.3 1 0.1 0.9

\ Galaxies
P(G|M,E)

m e PGM=mE=c¢) PGM=m,E=c¢e)
0 O 0.10 0.90
1 0 0.95 0.05
0 1 0.95 0.05
1 1 0.99 0.01

« The graph can be used to simplify conditional probability dependencies easily:
p(C, M, E,G) = p(C) p(E|C) p(M|C, £) p(G|f, M, E)
p(C, M, E,G) = p(C) p(E|C) p(M|C) p(G|M, E)
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I Bayesian networks: example

Inference and prediction

* [nference:

p(M|G)

p(E|G)

_ p(M,G) _ 2.p(C=c,M=1E=eG=1) (4313 _ 0.6135
— p(G) T > P(C=c,M=m,E=e,G=1) — 0.70305 -~
_ p(BG) _ XemPC=cM=mE=1,G=1) _ 03363 ., 4783
- p(G) chm}ep(C:c,]\/I:m,E:e,Gzl) — 0.70305 7 7
VAR _ p(ﬂ?j:E:G) _ ZCP(CZC:NIZO:E:O:Gzl) _0.0295
p(M, E|G) = =i = s O=ci=m,E=e,G=1) — 0.70305 ~ 0-0420

* Prediction:

> m.e P(C=1,M=m,E=¢,G=1)

G.O) _ _
p(G|C) = BEC) = e = (.7233
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I Bayesian networks: example

The “explaining away”

phenomenon

p(E|M,G) = p(E,M,G) Y. p(C=c,M=1E=1,G=1) _ 0.09405

p(M,G)

— . .p(C=c,M=1,E=e,G=1) _ 0.4313 ~ (0.2181

_ p(EG) _ 2empP(C=cM=mE=1G=1) _ 03363 .
PIEIG) =G = 5o pO=cM=mE=eG=1) — 0.70305 ~ 0-4783

*  So we have both:

p(E|M) = p(L)
p(E|M,G) < p(E|G)

e Thisis “
same effect.

* Particular case:

" or the © " phenomenon: two causes collide to explain the

2 Or [

0<p(A)<1; 0<p(B)<1; p(A|B)=p(A)

I:> <4 and

" p(A[B,C) < p(A|C)

 P(A[B,C) =1 > p(A|C)

/0



I Malmquist bias

«  Malmquist bias: in magnitude-limited
surveys, far objects are preferentially
detected if they are intrinsically bright.

Iog(luminosi’ryf‘

observed

log(distance)

0<p(A) <1l; 0<p(B)<1l; p(AlB)=p(4)
C=A+2B = p(A[B,C) =1 > p(A[C)
detected bright close

Malmquist (1922); Malmquist (1925)

Gunnar Malmquist (1893-1982)

/1


https://ui.adsabs.harvard.edu/abs/1922MeLuF.100....1M
https://ui.adsabs.harvard.edu/abs/1925MeLuF.106....1M




I Empirical Bayes

An alternative to maximum entropy for choosing priors
prior /hyperprior

p(0]d) o< p(d|@) p(0]n) p(n)
p(610) = [ p(Oln.d) plalay an = [ HEEZE 1)
p(n|d) = /p(nlt?)p(@ld) do

p(0]d) \
* lterative scheme (“Gibbs” sampler) to calibrate the hyperprior from the data: 7 0

N\ p(n|d)

«  Empirical Bayes is a truncation of this scheme after a few steps (often just one).

 Particular case: the Expectation-Maximisation (EM) algorithm (in machine learning, data mining)
7 is evaluated using an estimator 17°(d) given the data: X
p(d|0) p(0]n*)

p(nld) = op(n —n*(d)) = p(0]d) ~ p(d|n*)

(maximisation) (expectation) 73
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